Prepared by Prof. Hui Jiang 12-09-04

General Info
- Textbook: Operating System Concepts, 81 edition

- 3 lecture hours each week
CSE 3221

. - 2 assignments (2*5%=10%)
Operating System 1 project (10%)
Fu ndamentals - 4-5 in-class short quizzes (10%)

- In-class mid-term (30%)
- Final Exam (40%) (final exam period)

- In-class
Instructor: Prof. Hui Jiang

. , — Focus on basic concepts, principles and algorithms
Email: hj@cse.yorku.ca — Examples given in C
Web: http://www.cse.yorku.ca/course/3221 _ Brief case study on Unix series (mainly Linux)
- Assignments and tests
— Use C language

Bibliography Why this course?
- OS is an essential part of any computer system
- Required textbook : P y pu Y
-“0 ting System C ts: 8t edition”
perating System Concepts edition . To know
— what’ s going on behind computer screens
- Other reference books (optional): 9 -g P
“ o) — how to design a complex software system
— "Advanced Programming in the Unix
Environment” (for Unix programming, Unix API)
— “Programming with POSIX - Commercial OS:
threads” (Multithread — Unix, BSD, Solaris, Linux, Mac OS, Android, Chrome
programming in Unix, Pthread) 0s
— “Linux Kernel Development (2nd edition)” — Microsoft DOS, Windows 95/98,NT,2000,XP,Vista,
(understanding Linux kernel in details) Win7

What is Operating System? Computer Structure

- A program that acts as an intermediary between
computer users (user applications) and the computer

Programmer
hardware.
Application Programs Operating.
System
- Manage computer hardware: Designer
— Use the computer hardware efficiently. Utilities I|
— Make the computer hardware convenient to use. i |||
Operating System
— Control resource allocation.
— Protect resource from unauthorized access. Computer Hardware m

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang 12-09-04

Hardware Review Computer Hardware

- Instruction execution

mouse keyboard printer monitor

- Interrupt éwks@ é m

- Three basic 1/0 methods

disk
controller

graphics

e ‘ adapter

‘ USB controller ‘

- Storage hierarchy and caching | I | I

memory

Computer Hardware Instruction Execution

CPU Main Memory ‘Memory CPU Registers | Memory CPU Registers
N o 3005740~ [G0jrc [300[T5 40 [Foilrc
System : 1 301591 [{07070 3] Ac|
MAR Bus 2 3efoa] Wivaor (0B ([Tesor
Tostruction
Tostruct . 940070 03] 940075573}
nstroction N 9410002 941

. Memory CPURegiers | Memory CPU Registers

1/0 AR o o[is e [Eoilrc |wioas] [Foalrc
Data 301/ [070°0 3] Ac| 301 {000 5] Ac]

1/0 BR Data 32279 a7] {594 1JIR [302279 41 oM
pae 940070 0 3] 94000 0 3] 342 =5-
D s41[0002] 9410002
Seps

1
tep.

a sep3
/0 Module : 2 Memory CPURegiers | Memory CPU Registers
] o 5054w [Foalec |wo[ioan [Foalec
3015941 [0005]ac|30159a1] 0005 Ac|
swfry i szeal® [wpear] ([Zoedr
540[0003] 54000 03]
s41[0007] 941 [00°0.5]
PC = Program counter seps Seps
Butters IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register
1/0 AR = Input/output address register 0 34 15

VOBR = Inputioutput buffer register [

Opcode | Address |

Computer Components: Top-Level View

Interrupts Instruction Cycle with interrupts

- A hardware signal to interrupt the normal execution
sequence of CPU.

) Fetch Stage Execute Stage Interrupt Stage
- To notify CPU that an event has happened.
User Program Interrupt Handler Interrupts
Disabled
Check for
(i Fetch next Execute Inte 3
! START instruction Instruction linterrupt: mmn::::r:npi
2 Enabled Ltendler

i
Tnterrupt —» (HALT)
B e P

Instruction Cycle with Interrupts

Dept. of CS, York Univ. 2

Prepared by Prof. Hui Jiang 12-09-04

Interrupts Interrupt Handler

- |: - Program or subroutine to service a particular interrupt.

= - A major part of the operating system since modern OS
design is always interrupt-driven.

]
=
i

¥+ £ [o] Routine [

ok l - Determines which type of interrupt has occurred:
) * Polling
D » Vectored interrupt system

N 1

Main
Memory

- Interrupt Vectors: saved in low-end memory space

(1 Return from interrupt

Multiple Interrupts Multiple Interrupts
- Sequential interrupt processing: disable interrupts - Nested interrupt processing: define priority for interrupts.
while an interrupt is being processed - A high-priority interrupt preempts a low-priority one.
g e N g

Interrupt

Handler Y Interrupt

Handler Y

(a) Sequential interrupt processing

(b) Nested interrupt processing

I/0 Communication Techniques Programmed I/0 (Busy-waiting)
- Programmed I/0O (busy-waiting)
- Interrupt-driven I/O

- Direct memory access (DMA)

7 e
into memory

Nextinstruction

_ e

Dept. of CS, York Univ. 3

Prepared by Prof. Hui Jiang

12-09-04

Interrupt-driven I/0

TssucRead JCPU— VO
command o || | Dosomething
10 module 1™~ Pelse

Next instruction
(b) Interrupt-driven VO

DMA

PU — DMA

Issue Read
block command| Do something
VO module [~ Pelse

Next instruction

(c) Direct memory access

Storage Structure: storage hierarchy

registers

main memory

I
‘ electronic disk
4} [
‘ g

‘ magnetic disk

—f—1

magnetic tapes L

Storage Hierarchy

Level 1 2 3 4

Name registers cache main memory disk storage
Typical size <1KB > 16 MB >16 GB > 100 GB
Implementation custom memory with | on-chip or off-chip| CMOS DRAM magnetic disk
technology multiple ports, CMOS | CMOS SRAM

Access time (ns) 0.25-0.5 05-25 80-250 5,000.000

Bandwidth (MB/sec) | 20,000 — 100,000 5000 — 10,000 1000 - 5000 20-150

Managed by compiler hardware operating system | operating system

Backed by cache main memory disk CD or tape

Volatile vs. Persistent

Caching

Caching is an important principle in computer systems.
Improve access speed with minimum cost.

Caching: copy information to a faster storage system on a
temporary basis.

Example:

One memory access 100 nanoseconds

One cache access 20 nanoseconds

If hit rate is 99%, then

(1) 128M memory without cache: 100 nano

miss (2) 128M cache: 20 nano (too expensive)

(3) 128M memory + 128K cache:
0.99*20+0.01*120 = 21 nano

hit

128 Kb

128 Mb

IE@

Dept. of CS, York Univ.

Caching
- Why high hit rate?
— Memory access is highly correlated
— Locality of reference
- Cache Design:
— Cache size

— Replacement algorithm: Least-Recently-Used (LRU)
algorithm

— Write policy: write memory when updated or replaced.
— Normally implemented by hardware.

Block Transfer

Word Transfer

Main Memory

Prepared by Prof. Hui Jiang

12-09-04

Computer System (overview)

g j— instruction execution —»
) o cycle instructions
thread of execution | g g P
j«— data movement —» data
CPU ("N}

&

T DMA

£

= memory

/
\

,’\//,4— 1senbal Q| ——
N
>‘— ejep ——>
\

OS Overview

Users Uﬁ

{\
| S | [
... ilef

Operating | Process [Memory | System | o-System
Systems Manage | Manage | Secondary Manage

System Calls

Storage
Computer | 110 E
Hardware i CPU Memory Storage Devices |!

Process Management

- A process is a program in execution.

- A process needs certain resources, including CPU time,
memory, files, and I/O devices, to accomplish its task.

- The operating system is responsible for the following
activities in connection with process management.

— Process creation and deletion.
— Process suspension and resumption.
— Provision of mechanisms for:
* Process synchronization
* Inter-process communication
* Handling dead-lock among processes

Main-Memory Management

- Memory is a large array of words or bytes, each with its own
address. It is a repository of quickly accessible data shared by
the CPU and I/O devices.

- Main memory is a volatile storage device. It loses its contents in
the case of system failure.

- For a program to be executed, it must be mapped to absolute
addresses and loaded into memory.

- We keep several programs in memory to improve CPU utilization

- The operating system is responsible for the following activities in
connections with memory management:

— Keep track of memory usage.
— Manage memory space of all processes.
— Allocate and de-allocate memory space as needed.

Secondary-Storage Management

- Since main memory (primary storage) is volatile and too small
to accommodate all data and programs permanently, the
computer system must provide secondary storage to back up
main memory.

- Most modern computer systems use hard disks as the principal
on-line storage medium, for both programs and data.

- The operating system is responsible for the following activities
in connection with disk management:

— Free space management
— Storage allocation
— Disk scheduling

Dept. of CS, York Univ.

File Management
- File system: a uniform logical view of information storage
- AFile:
— logical storage unit
— a collection of related information defined by its creator.
Commonly, files represent programs (both source and object
forms) and data.
- Files are organized into directories to ease their use.

- The operating system is responsible for the following activities in
connections with file management:

— File Name-space management

— File creation and deletion.

— Directory creation and deletion.

— Support of primitives for manipulating files and directories.
— Mapping files onto secondary storage.

— File backup on stable (nonvolatile) storage media.

Prepared by Prof. Hui Jiang

12-09-04

I/0 System Management
- The 1/O system consists of:

— A memory-management component that includes
buffering, caching, and spooling.

— A general device-driver interface.
— Drivers for specific hardware devices.

| Hardware devices and controllers |

Protection System

- Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.

- The protection mechanism must:

— distinguish between authorized and
unauthorized usage.

— specify the controls to be imposed.
— provide a means of enforcement.

Content in this course

- Managing CPU usage
— Process and thread concepts
— Multi-process programming and multithread programming
— CPU scheduling
— Process Synchronization
— Deadlock
Managing memory usage
— Memory management and virtual memory
- Managing secondary storage
— File system and its implementation
— Mass-storage structure
- Managing I/O devices:
— /O systems
- Protection and Security
- Case study on Unix series (scattered in all individual topics)

Tentative schedule
(subject to change)

Totally 12 weeks:

- Background (2.5 week)

- Process and Thread (2 weeks)

- CPU scheduling (1 week)

- Process Synchronization (2.5 weeks)
- Memory Management (2 weeks)

- Virtual Memory (1 week)

- Protection and Security (1 week)

Several must-know
OS concepts

- System Boot
- Multiprogramming

- Hardware Protection
— OS Kernel

- System Calls

Dept. of CS, York Univ.

OS Booting

- Firmware: bootstrap program in ROM
— Diagnose, test, initialize system

- Boot block in disc

- Entire OS loading

Prepared by Prof. Hui Jiang

12-09-04

Simple Batch Systems

OS Kernel:
free memory
— initial control in OS
— OS loads a job to memory .
— control transfers to job ree memory
— when job completes process
control transfers back to
monitor
- Automatic job sequencing — command
automatically transfers control interpreter Pf:"‘"‘a;‘d
to another job after the first is interpreter
done. kernel kernel
Batch system is simple to
Y P @ ©)

design, but CPU is often idle.

Memory Layout for a Simple Batch System

Multiprogramming System

- Several jobs are kept in main memory at
the same time, and CPU is multiplexed
among them.

How to implement multiprogramming is
the center of modern OS.

- OS Features Needed for
multiprogramming:
— Memory management — the system must
allocate the memory to several jobs

Some scheduling mechanism — OS must process B
choose among several jobs ready to run

Protection between jobs.
— Allocation of devices to solve conflicts
1/0 routine supplied by the OS

process D

free memory

process C

interpreter

kernel

Memory Layout for
Multiprogramming System

Multiprogramming

Program A Wait Wait
Program B Wail Wait Wait
Program C Wait ‘EI Wait ‘m\ Wait
Combined R:" R;" Rg" Wait R:" RI';"' Rg" Wait

Time

(¢) Multiprogramming with three programs

Multiprogramming: example
JOB1 JOB2 JOB3
Type of job Heavy compute Heavy VO Heavy VO
Duration 5 min 15 min 10 min
Memory required 50M 100 M 5M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes
T
Processor use 20% 40%
Memory use 33% 67%
Disk use 33% 67%
Printer use 33% 67%
Elapsed time 30 min 15 min
Throughput 6 jobs/hr 12 jobs/hr
Mean response time 18 min 10 min

Time-Sharing Systems (Multitasking)
—Interactive Computing

Multitasking also allows time sharing among jobs:
Job switch is so frequent that the user can interact
with each program while it is running.

- Allow many users share a single computer

- To achieve a reasonable response time, a job is
swapped into and out of the disk from memory.

- The CPU is multiplexed among several jobs that are
kept in memory and on disk (CPU is allocated to a
job only if the job is in memory).

Dept. of CS, York Univ.

Hardware Protection

Dual-mode Protection Strategy
— OS Kernel

Memory protection
- CPU protection

1/0 protection

Prepared by Prof. Hui Jiang 12-09-04

Dual-Mode CPU Operation Dual-Mode CPU Operation (Cont.)
- Provide hardware support to differentiate between at least two
modes of CPU execution. - At boot time, CPU starts at kernel mode.

1. User mode — execution done on behalf of user programs.

2. Kernel mode (also monitor mode or system mode) — execution
done on behalf of operating system.

- OS always switches to user mode before passing control
to user program.

- A mode bit in CPU to indicate current mode. - When an interrupt or fault occurs hardware switches to
- Machine instructions: kernel mode.
— Normal instructions: can be run in either mode Interrupt/fault

— Privileged instructions: can be run only in kernel mode
- Carefully define which instruction should be privileged:

— Common arithmetic operations: ADD, SHF, MUL, ...

— Change from kernel to user mode set user mode

— Change from user to kernel mode (not allowed)

— Turn off interrupts

- TRAP - OS always in kernel mode; user program in user mode.
— Set value of timer

0OS Kernel Memory Protection
- Each running program has its own memory space
OS Kernel - Add two registers that determine the range of legal addresses:
Key functions: — base register — holds the smallest legal physical memory address.
Process management . X X 3
Program Data Memory management — Limit register — contains the size of the range
& Codes structure etc. g
monitor
Kernel space T 256000
I I [t PTG
Bretcesssctstctctcnssscnsscnsnsnnsscnses Bl
: = (vid 300040
User space {} : _(vla system calls) 300040
ennanl base register
job2
Pfgsnt::s Command User Program 420040 @
9 Interpreter (shell) job3 fimit register
rap o operating system
830000 e monitor—addressingeror ____memory _|
Program Data Program Data —_— e
|& Codes | | structure |& Codes | | structure & Codes | | structure ke
1024000
- Loading these registers are privileged instructions
- OS, running in kernel mode, can access all memory unrestrictedly

I/0 Protection

CPU Protection
- To prevent users from performing illegal I/O, define all I/
- Timer — interrupts computer after specified period to O instructions to be privileged instructions.

ensure operating system maintains control. - User programs can not do any I/O operations directly.

~ Timer is decremented every clock tick. - User program must require OS to do I/O on its behalf:
— When timer reaches the value 0, an interrupt occurs. _ OS runs in kernel mode

- OS must set timer before turning over control to the user. _ 0OS first checks if the /O is valid

- Load-timer is a privileged instruction. — If valid, OS does the requested operation;

- Timer commonly used to implement time sharing. Otherwise, do nothing.

- Timer is also used to compute the current time. — Then OS return to user program with status info.

- How a user program asks OS to do 1/0
— Through SYSTEM CALL (software interrupt)

Dept. of CS, York Univ. 8

Prepared by Prof. Hui Jiang 12-09-04

System Calls System Call Implementation
- System calls provide the interface between a running user program
and the operating system. - Typically, a unique number is associated with each system call:
- Process and memory control: — Syst Il interface maintains a table indexed according to
— Create, terminate, abort a process. these numbers.
— Load, execute a program. - Basically, every system call makes a software interrupt (TRAP).
— Get/Set process attribute. - The system call interface invokes intended system call in OS kernel

and returns status of the system call and any return values

- Three general methods are used to pass parameters between a
running program and the operating system.

— Pass parameters in registers.
— Store the parameters in a table in memory, and the table

— Wait for time (sleep), wait event, signal event.

— Allocate and free memory.

— Debugging facilities: trace, dump, time profiling.
- File management:

— create, delete, read, write, reposition, open, close, etc. address is p d as a par ter in a regi
- 1/0 device management: request, release, open, close, etc. (This approach is taken by Linux and Solaris.)
- Information maintain: time, date, etc. — Push (store) the parameters onto the stack by the program, and
- Communication and all other I/O services. pop off the stack by operating system.

System Call - OS Relationshi - -
Y P Parameters Passing Via Table
user application
main()
X
open () _strut_PARA sp; register
user
mode .- X: parameters
ﬁ system call interface }7 for call
i t &sp) ; use parameters | | code fo
mode S load address X - !vo’:n table X } system
_system_call_(13,&sp); B cal3
open ()
Implementation
[— f ope
! gy;‘;n? c(a)ll } user program
: operating system
return

Use of A System Call to Perform I/0 Some UNIX I/O0 system calls
- open(), read(), write(), close(), Iseek():
ca!en os #include <sys/stat.h>

I:] kernel #include <fcntl.h>

int open(const char *path, int oflag) ;
trap to perform 1/0 #include <unistd.h>
os "

ssize t read(int fd, void *buf, size t count);

#include <unistd.h>

@ ssize_t write(int fd, const void *buf, size_ t count);
return
fouser #include <unistd.h>

user int close(int £d);
system call n program

#include <unistd.h>
off t lseek(int fildes, off t offset, int whence) ;

Dept. of CS, York Univ. 9

Prepared by Prof. Hui Jiang 12-09-04

Example of System Calls System Call vs. API

- System call sequence to copy the content of one file i
to another file - System calls are generally available as assembly-
language instructions:

source fle | | destination fie — Some languages support direct system calls, C/C++/

Example System Call Sequence Perl-
e . .
R e - Mostly accessed by programs via a higher-level
iccepCinnl (R Application Program Interface (API) rather than direct
Write prompt to screen system Ca" use.
Accept input

Open the input ile

¥ e docsnt exist, abort - Why use APIs rather than system calls?

Create itput fil .

i flo exists, abort — API’s are easier to use than actual system calls
o e o Tlo since they hide lots of details

Write to output file .

Until read fails — Improve portability

Close output file
Write completion message to screen
Terminate normally

- . . -
Standard C Library Example System Calls: Unix vs. Windows
Windows Unix
- C program invoking printf () library call, which Process Crostohracesal) S0
prog gp ry , Councl ExitProcess() exit()
calls write () system call WaitForSingleObject() wait()
#include <stdio.h> File CreateFile() open()
intmain () Manipulation ReadFile() read()
{ WriteFile() write()
. CloseHandle() close()
_;,m"(“meemgsw); Device SetConsoleMode () ioctl()
. Manipulation ReadConsole() read()
. WiiteConsole() write()
return 0;
Information GetCurrentProcessID() getpid()
Maintenance SetTimer() alarm()
Sleep() sleep()
mode P ” 5
Communication CreatePipe() pipe()
Ikernel CreateFilelapping() shnget ()
mode MapViewOfFile() mmap ()
write ()
TN Protection SetFileSecurity() chmod ()
7 wite ()N InitlializeSecurityDescriptor() umask()
C systemall) SetSecurityDescriptortroup() chown ()
A

Dept. of CS, York Univ. 10

