# **CSE 5910 Software Foundations**

Instructor: Aijun An aan@cse.yorku.ca Office: Lassonde 2048 Office Hours: Tue & Thur 2:45pm - 3:30pm

http://www.cse.yorku.ca/course/5910

# Outline **Course Information** • Course content and objective • Textbook Class format Marking scheme Introduction to Computers Introduction to Programming Languages Introduction to C++ How to create, compile and run a C++ program How to create an CSE account and use Linux (in the lab)

# **Course Content**

### C++

- One of the most popular programming languages
  - Used in many fields including quantitative finance • Huge code base in place that is hard to replace
- Has both high-level and low-level language features.
  - High-level features make it easy to use for general purpose
  - Low-level features make it powerful and its programs run fast.
- A multi-paradigm programming language, supporting both
  - Object-oriented programming
  - Procedural programming

# **Course Objective**

Learn how to read, design and write C++ programs

By the end of the course, you should be able to

- Understand C++ programs
- Design programs
- Write modest-sized programs in C++
- Test and debug C++ code

# Textbook Title: Problem Solving with C++ (8th Edition) Author: Walter Savitch

### The book is written for students without prior programming experience.

Has self-test exercises with answers.



| Textbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C++  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| The book is sold in the following forms:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5    |
| <ul> <li>hard copy - \$119.70 at York University Bookstore</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| <ul> <li>eText - \$49.95 at York University Bookstore</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| <ul> <li>hard copy plus <u>MyProgrammingLab</u> with Pearson eText<br/>Access Card, 8th Edition - \$128.27 at <u>Pearson</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| <ul> <li>eText with <u>MyProgrammingLab</u> – Instant Access – for<br/>Problem Solving with C++, 8/e - \$90.10 at <u>CourseSmart</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9    |
| The first second s | 1.10 |
| Print Depung Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |

5

### **Class Format**

### Lectures and Labs

- Time: 11:30am 3:00pm
- Location: Lassonde 1002 (from the 2<sup>nd</sup> class)

Lab content:

• Exercise on computers with assistance from the instructor and TA

Format

- The first 2 to 2.5 hours are lectures.
- The last 1-1.5 hour is lab exercise.

### **Marking Scheme**

The weight distribution of the course components is as follows:

- 30% Assignments (5 assignments)
- 10% Labs (1% for each lab)
- 25% Midterm test (November 9 in class)
  including written test and lab test
- 35% Final exam
  - including written test and lab test

# **Course Website**

http:www.cse.yorku.ca/course/5910

or

https://wiki.cse.yorku.ca/course\_archive/2012-13/F/5910/

It contains all the information about the course

- Lecture notes will be posted there.
- Assignments will be posted there.
- How to remotely access the CSE Linux server in order to use the C++ complier.
- Course policies
- .....

# Outline

### **Course Information**

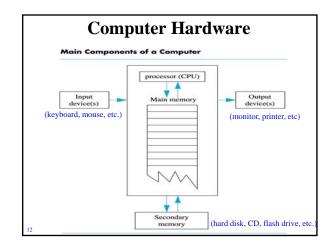
- Course content and objective
- Textbook
- Class format
- Marking scheme

Introduction to Computers

Introduction to Programming Languages

Introduction to C++

How to create, compile and run a C++ program


How to create an CSE account and use Linux (in the lab)

# **Computer Systems**

A computer system contains

### • Hardware

- the collection of physical elements that comprise a computer system
- Examples: processor, main memory, disk, screen, keyboard, etc.
- Software
  - The collection of programs used by a computer system
  - A computer program is
    - a set of instructions for a computer to follow
  - Examples: text editors, operating systems, etc.

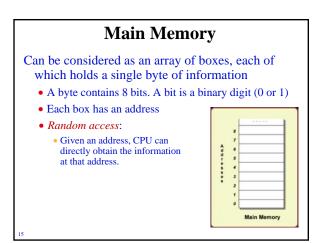


# **Processor (CPU)**

CPU stands for Central Processing Unit

It's the brain of the computer

- Follows the instructions in a program
- Perform calculations specified by the program


Typical capabilities of CPU include:

add

- subtract multiply
- divide
- move data from location to location

# Main Memory Internal storage area in the computer • also called memory or RAM (Random Access Memory) Stores program instructions and data currently being processed by the CPU Compared to other storage media • Access to RAM is fast

• Information is not saved when the computer is powered off.



# Secondary Memory

Stores programs and data in the forms of files

Files cannot be directly processed by CPU.

• A file must be loaded into the main memory to be processed.

Slower to access than main memory

Often requires sequential access

• read through the file from the beginning in the order in which it is stored

The information on the secondary memory is not lost when the system is powered off.


# **Types of Secondary Memory**

### Hard disk

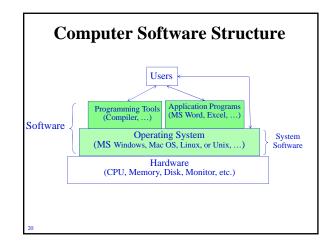
- Fast (but slower than main memory)
- Usually fixed in the computer and not normally removed
- Floppy disk
- Slow
- Easily shared with other computers

### Compact disk

- Slower than hard disks
- · Easily shared with other computers
- Can be read only or re-writable
- Flash memory
  - Slower than hard disks
- <sup>7</sup> Easily shared with other computers



### • Binary code (consists of 0s and 1s).


- · Can be directly executed by the computer
- Source code
  - Written in a *programming language* (human understandable)
  - Need to be either converted into an executable program by a *compiler* or may be executed with the aid of an *interpreter*.

# **Computer Software**

A collection of programs and related data

Types of software (according to functionalities)

- System software
  - the programs used to operate and manage computer hardware
  - Examples: operating systems (Windows, Mac OS, Linux), device drivers, utilities, etc.
- Programming tools
  - Used to create, translate, combine, debug and maintain programs
  - Examples: compilers, interpreters, linkers, debuggers, text editors.
- · Application software
  - · Designed to help the user to perform specific tasks
  - Examples: Word processors, web browsers, accounting, financial
  - analysis, computer games, media plays, etc.



# **Operating System**

The most important system program that

- manages and allocates computer hardware resources
- allows us to communicate with the hardware
- responds to user requests to run other programs

Common operating systems include:

- Windows, MAC OS, Unix, Linux, DOS, etc.
- We are going to use Linux in this course.

## Outline

### **Course Information**

- Course content and objective
- Textbook
- Class format
- Marking scheme

Introduction to Computers

Introduction to Programming Languages

Introduction to C++

How to create, compile and run a C++ program

How to create an CSE account and use Linux (in the lab)

# **Programming Languages**

An artificial language designed to write computer programs

Common programming languages include

C, C++, Java, Pascal, Visual Basic, FORTRAN, Perl, COBOL, Lisp, Scheme, Ada, C#, Python, MATLAB

# **Programming Languages**

- Programming languages can be classified along multiple axes:
  - High-level or low-level
  - Compiled, interpreted or just-in-time compiled
  - Procedural, object-oriented, etc.

# High-level vs. Low-level

### Low-level language

- · deals more with direct hardware interaction, and thus
- is more suitable for programs like device drivers code that really needs access to the hardware.
- difficult to port to other platforms.
- must be converted into executable machine code (zeros and ones)

### Example: assembly language

• An assembly language command such as

### ADD X Y Z

might mean add the values found at x and y in memory, and store the result in location z.

# High-level vs. Low-level

### High-level language

- resembles human languages
- is designed to be easy to read and write
- takes less time to develop a program
- generally portable among different platforms
- must be translated to zeros and ones for the CPU to execute a program

### Examples:

C, C++, Java, Pascal, Visual Basic, FORTRAN, Perl, COBOL, Lisp, Scheme, Ada, C#, Python, MATLAB

# **Compiled vs. Interpreted**

### Compiled language

- Programs need to be translated into an executable machine code by a *compiler* and later executed.
- The executable program runs faster.
- Example: C, C++, Fortran

### Interpreted language

- Programs can be executed immediately with the aid of an *interpreter*
- Program runs slower
- Example: Perl, MATLAB, Basic
- Just-in-time compiled language
  - Program is first compiled into portable byte code, which can later be executed with the aid of an interpreter.
  - Slower than the compiled, but faster than the purely interpreted.
  - Example: Java

# Procedural vs. object-oriented

### Procedural:

- Program consists of a set of functions or procedures
- Examples: C, C++, Visual Basic, MATLAB, ....

### **Object-oriented:**

- · Program consists of classes and objects
- Examples: Java, C++, Python, ....

# Outline

- Course Information
  - Course content and objective
  - Textbook
  - Class format
  - · Marking scheme

Introduction to Computers

Introduction to Programming Languages

*Introduction to C++* 

How to create, compile and run a C++ program

How to create an CSE account and use Linux (in the lab)

# Introduction to C++

- A high-level programming language with some low-level constructs
  - High-level constructs (such as branching and looping statements, functions and objects) make it easy to write programs
  - Low-level constructs (such as pointers) make it possible to manipulate hardware, such as direct access to main memory.

A compiled language

- A multi-paradigm language
  - Supporting both procedural and object-oriented programming
- C++ programs generally run
  - faster than Java, C# and other high-level language programs,
- but slower than C programs.

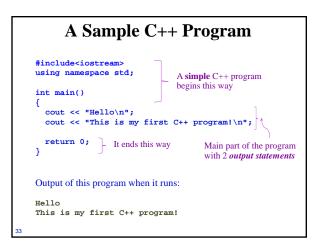
# **Introduction to C++**

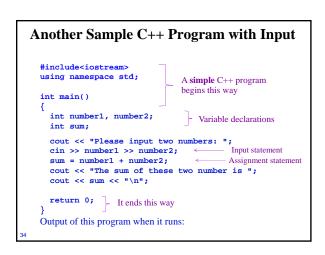
Where did C++ come from?

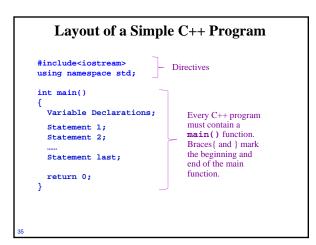
- Derived from the C language
- C is a procedural language. C++ can be considered C with objects.
- C was derived from the B language
- B was derived from the BCPL language

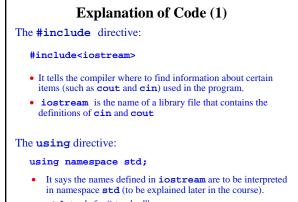
Why the '++'?

• ++ is an operator in C++ and results in a cute pun


# **C++ History**


C developed by Dennis Ritchie at AT&T Bell Labs in the 1970s.


- Used to write and maintain UNIX operating systems
- Many commercial applications written in C


C++ developed by Bjarne Stroustrup at AT&T Bell Labs in the 1980s.

- Overcame several shortcomings of C
- Incorporated object oriented programming
- C remains a subset of C++









std stands for "standard".

### **Explanation of Code (2)**

Variable declaration line

int number1, number2;
int sum;

- Declare three variables to hold integers
- int means integers

# Explanation of Code (3)

### Output statements:

cout << "Hello\n"; cout << "This is my first C++ program!\n"; cout << "Please input two numbers: "; cout << "The sum of these two number is "; cout << sum << "\n"; • cout (see-out) used for output to the monitor • Think of cout as a name for the monitor

- << is the *insertion* operator
  - It inserts the data that follows it into the monitor.
  - "<<" points to where the data is to end up
- Can use more than one "<<" in one output statement
- '\n' causes a new line to be started on the monitor

### **Explanation of Code (4)**

Input statement:

cin >> number1 >> number2;

- cin (see-in) used for input from the keyboard
  Think of cin as a name for the keyboard
- ">>" is called the *extraction* operator
  - It extracts data from the keyboard
  - ">>" points from the keyboard to a variable where the data is stored

When the program runs, the above input statement takes two numbers from the keyboard, separated by space, tab or newline.

### **Explanation of Code (5)**

### Assignment statement:

sum = number1 + number2;

- Performs a computation
- + is used for addition
- '=' causes variable **sum** to get a new value based on the calculation shown on the right of the equal sign

### **Program Layout and Style** Compiler accepts almost any pattern of line breaks and indentation Example 1: cout << "Hello\n"; is the same as cout << "Hello\n";

### Eaxmple 2:

```
cin >> number1 >> number2;
sum = number1 + number2;
```

```
is the same as:
```

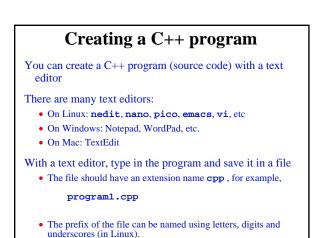
```
cin >> number1 >> number2; sum = number1 + number2;
```

# Program Layout and Style (Cont'd) Programmers format programs so they are easy to read Use only one statement per line Indent statements Place opening brace '{' and closing brace '}' on a line by themselves Variables are declared before they are used Typically variables are declared at the beginning of the program Statements and declarations end with a semi-colon

### Outline

**Course Information** 

- Course content and objective
- Textbook
- Class format
- Marking scheme


Introduction to Computers

Introduction to Programming Languages

Introduction to C++

*How to create, compile and run a C++ program* 

How to create an CSE account and use Linux (in the lab)



 Compiling a C++ program

 A C++ source code needs to be converted to machine code

 (i.e., executable program) to be run by CPU

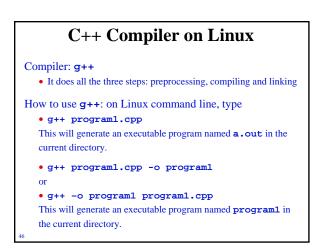
 A C++ executable program is built in three stages:

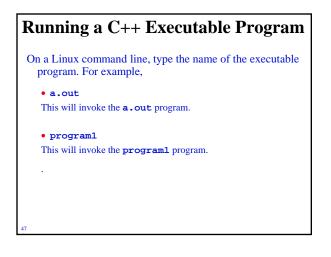
 C++ source code (.cpp files)

 Preprocessor

 handles #include and #define

 C++ source code


 compiler


 processor instructions

 Object code (.o files)

 Linker

↓ Executable code





# **Debugging a Program**

### Bug

• A mistake in a program

### Debugging

- Eliminating mistakes in programs
- Term used when a moth caused a failed relay on the Harvard Mark 1 computer. Grace Hopper and other programmers taped the moth in logbook stating: "First actual case of a bug being found."

# **Types of Program Errors**

### Syntax errors

- Violation of the grammar rules of the language
- Discovered by the compiler
- Error messages may not always show correct location of errors
- Example: miss a semicolon (;) at the end of a statement

### Run-time errors

- Error conditions detected by the computer at run-time
- Example: divide a number by zero

### Logic errors

- Errors in the program's algorithm
- Most difficult to diagnose
- Computer does not recognize an error

# Lab 1

Create a CSE account

Use Linux commands

Use Text Editor on Linux to Create a C++ program

- nedit
- nano (http://mintaka.sdsu.edu/reu/nano.html)

Compile a C++ program

Run a C++ program

Remove login instructions

# **Home Exercises**

Practice remote login from your home computer or laptop to the CSE Linux Server

• Instructions are at

https://wiki.cse.yorku.ca/course\_archive/2012-13/F/5910/accessmatlab

Practice creating, compiling and running a C++ program

• from home through remove login

Read Chapter 1 and do as many self-test exercise questions in Chapter 1 as possible

# Home Exercises (Cont'd)

Write, compile and run a program that outputs: Hello Hello Hello Write, compile and run a program that outputs: xxx

x x x

x x

x x x xxx