
1

1

CSE 5910
C++ Basics

Instructor: Aijun An

Department of Computer Science and Engineering

York University

aan@cse.yorku.ca

http://www.cse.yorku.ca/course/5910

1 2

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab exercises

2

3

C++ Program Structure

A C++ program consists of

functions, variables, constants, classes,…

A function contains

 variable declarations

 statements that operate upon variables and
constants

Every program must contain a main() function

 Execution of a program starts at main()

A Simple C++ Program

4

#include<iostream>
using namespace std;

int main()
{

int number1, number2;
int sum;

cout << "Please input two numbers: ";
cin >> number1 >> number2;
sum = number1 + number2;
cout << "The sum of these two number is ";
cout << sum << "\n";

return 0;
}

Directives to include declarations of some
variables and functions used in the
program but defined elsewhere, e.g.,
library.

Statements

Variable declarations

main function

5

Variables
Variables store data, whose value can change.

Variables are like small blackboards
 We can write a number on them

 We can change the number

 We can erase the number

C++ variables are names for memory locations
 We can write a value in them

 We can change the value stored there

 We cannot erase the value in the memory location
 Some value is always there

6

Variable Names
Each variable is identified by its name.

 In C++, names of variables, functions, classes, etc. are called
identifiers.

Rules for choosing variable names
 First character must be

 a letter, or

 the underscore character

 Remaining characters must be
 letters

 numbers

 underscore character

 Length can be 1 or more. No length limit with g++ compiler.

 Use meaningful names that represent data to be stored

2

7

Variable Names (Cont’d)
Names are case sensitive

 “a” and “A” are not the same

Names starting with “_” are usually reserved (library names)

Cannot use keywords as identifiers
 Keywords are reserved words used in the C++ language:

if, for, while, float, double, int, char, long,
break, true, false, const……

 They must be used as they are defined in the programming
language

8

Exercise

Indicate which variable names are legal and which
are not:
 ace_5
 5_ace
 _ace5

 i.g
 x-y
 X2Y
 int

ok but dangerous

9

Exercise

Which of the following is a legal identifier?

 5_And_10
 Five_&_Ten
 _________
 LovePotion#9
 "Hello World"

10

Exercise

Can you give good variable names to store

 the speed of an automobile?

 an hourly pay rate?

 the highest score on an exam?

11

Data Types
Variables and values have types in C++

Below are some of the basic types in C++:
 int – integer (e.g., 3, 102, 3211, -456, etc.)

 float - single-precision floating point number
 real number, i.e., number with a fractional component

 Example: 1.34, 4.0, -345.6, 0.2453, etc.

 double - double-precision floating point number
 real number.

 Can have more significant digits than the float type

 Example: 1.34, - 235.67, 21.368268683526, -0.286286382621

 char – character, a single byte
 Example: ‘b’, ‘A’, ‘#’, ‘8’, ‘-’

 bool – Boolean type with two values: true or false

We will discuss other types later. 12

Data Types (Cont’d)

Different types of data

 occupy different sizes of memory space

 have different internal representations in memory.
(The values in the table are a sample. The values vary among systems.)

Type name Memory used Value range Precision (# of
significant digits)

char 1 byte N/A N/A

int 4 bytes -231 ~ 231-1 N/A

float 4 bytes Approximately
-1038 ~ -10-38

10-38 ~ 1038

7 digits

double 8 bytes Approximately
-10308 ~ -10-308

10-308 ~ 10308

15 digits

3

Declaring Variables
Before use, variables must be declared

 Tells the compiler the type of data to store

Declaration syntax:
 Type_name Variable_1, Variable_2, . . . ;

Examples:
int number_of_bars;

double one_weight, total_weight;

 number_of_bars is of type integer

 one_weight and total_weight are both of type double

13

Declaring Variables (Cont’d)
Locations for variable declarations

 At the beginning of a function:
int main()
{

int sum;

int score1, score2;

cin >> score1 >> score2;

sum = score1 + score2;

cout << sum << " \n";

return 0;

}

Both places are ok in C++. But it is a good practice to define
variables at the beginning.

 Immediately before use:
int main()
{

int score1, score2;

cin >> score1 >> score2;

int sum;

sum = score1 + score2;

cout << sum << " \n";

return 0;

}

14

Declaring Variables (Cont’d)
Declaring a variable tells the compiler to locate a memory

space for the variable
 The initial value of the variable depends on what’s in that

memory space.

You can give an initial value to a variable when declaring it.
You can do it with one of two methods.
 Method 1:

double mpg = 26.3, area = 0.0, volume;

 Method 2:

double mpg(26.3), area(0.0), volume;

With either method, mpg is initialized to 26.3 and area is
initialized to 0

15 16

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab exercises

16

Constants
Constants refer to fixed values that the program may not

alter.
 Examples: 3.14, -10, 'C', "hello", true,

 They are called literals.

Constants can be of any of the basic data types and can be
divided into
 Integer constants

 Double constants

 Characters

 Strings

 Boolean values
 Two values: true and false

17

Integer Constants
Integer constants do not contain decimal points

Can be written in one of the three forms
 Decimal form (base 10):

 2, 198, 0, -9823, etc.

 Octal form (base 8):
 012, 025, -025, etc. // start with zero

 Hexadecimal form (based 16)
 0x4b, 0X7c, etc. // start with 0x or 0X

18

4

Double Constants
Double constants can be written in two ways

 Simple form must include a decimal point
 Examples: 34.1 23.0034 1.0 89.9

 E-notation (Floating point notation, Scientific notation)
 Used to write very large or small values

 Examples:

 3.67e17 means 3.67  1017 = 367000000000000000.0

 5.89e-6 means 5.89  10-6 = 0.00000589

 -30.41e2 means -30.4110 2 = - 3041

Here e (or E) represents “times ten raised to the power of”

 Number left of e does not require a decimal point

 3e5 is legal

 Exponent cannot contain a decimal point

 3e5.1 is not legal19

Integer and Double Constants
2 and 2.0 are not the same number in the internal

representation
 2 is of type int (4 bytes)

 2.0 is of type double (8 bytes)

Numbers of type int are stored as exact values

Numbers of type double may be stored as approximate
values due to limitations on number of significant digits
that can be represented

20

21

Character Constants
A C++ character is one byte (8-bit) in size

A constant character is specified with single quotes:
 Regular characters

'A', 'C', 'z', '2', '#', '$', ….

Example:

char x='A', y=‘$’;

 Special characters: invisible or control characters

 Use escape sequence to represent

 '\n' represents “newline”, '\t' represents “tab”, '\0'
represent the null character.

Example:

char z='\t';
22

Special Characters

Escape
sequence

Meaning

\n New line

\t Tab

\0 The null character

\\ The \ character

\" Double quote

\' Single quote

23

Internal Representation of Characters

They are integers, interpreted according to the character
encoding (usually ASCII),

 e.g. 'a' is 97,

'0' is 48

Escape sequences are integers too

 e.g. '\n' is 10 (newline character)

'\t' is 9 (horizontal tab)

char c;

c='0'; same as

c=48;

24

Internal Representation of Characters
ASCII Table

5

25

String Constants
A string constant is a sequence of characters in double

quotes

"This is a string!"

A string can contain control characters (escape sequences)
"\tThis is also a string!\n"

In memory, a string constant is a sequence of bytes
terminated by a null char '\0'
"a" --- 2 bytes

"\tThis\n" --- ? bytes

Naming Constants
Sometimes, it is better to give a constant a name to show the

meaning of the constant.

In C++ we can use keyword const to declare a constant

Example:
const double PI = 3.14;

declares a constant named PI.

 Its value cannot be changed by the program like a variable
 Compiler will show error if try to change its value.

 Benefits:
 Meaningful, and it is easy to edit the value in the program if it’s

used multiple times.

 It is common to name constants with all capitals26

27

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab exercises

27 28

Expressions
Expressions are formed by combining variables, constants

and function calls using operators.

They are used for computation.
 Each expression can be evaluated to a value.

Arithmetic operators in C++
 + for addition

 - for subtraction

 * for multiplication

 / for division

 % for remainder (modulo)

Examples of arithmetic expressions:
score1+score2, 3*x-2, sqrt(y)/3.5

Function call

Introduction

Examples of Arithmetic Expressions

Sli
de

Remainder Operator
% operator gives the remainder from integer division

Example:
5 % 3 is 2

12 % 3 is 0

14 % 3 is 2

30

6

Arithmetic Expressions
You can use spacing to make expressions more readable

 Which is easier to read?

x+y*z or x + y * z

Precedence rules for operators are the same as used in your
algebra classes

Use parentheses to alter the order of operations

x + y * z (y is multiplied by z first)
(x + y) * z (x and y are added first)

31 32

Precedence
Appendix 2 in the textbook gives a full table of

precedence of operators

For arithmetic operators, it is easy:

 parentheses first

 /,*,% before +,-

 +,- before assignment operator (‘=’)

y = 1 + 3*x;

Results of Arithmetic Operation
Arithmetic operators can be used with any numeric type

(e.g., int, float, double)

An operand is a number or variable used by the operator

score1 + score2

Result of an operation depends on the types of operands. For
example,
 If both operands are int, the result is int

 If one or both operands are double, the result is double

33

operand operandoperator

Division of Integers
Be careful with the division operator!

 int/int produces an integer result
(true for variables or numeric constants)

int a, b, c;
a = 5;
b = 3;
c = a / b;

 The value of c is 1, not 1.666…

 Integer division does not round the result, the fractional part is
discarded!

34

35

Result of Operation - Examples

int

int
int

double

double
double

int

double
double

operator

operator

operator

17/5
• 3

17.0/5
• 3.4

9/2/3.0/4

• 9/2=4

• 4/3.0=1.33333

• 1.3333/4=0.333333

36

General Rule: Type Promotion

Given an expression with operands of mixed types, C++
promotes the types of values to do the calculations
 promotes means converts to a more precise type

For example, for expression x/y
 If x is of type int and y is of type float

 x’s value is read, converted to a float and then used in division. The result
is float.

 If x is of type float and y is of type double
 x’s value is read, converted to a double and then used in division. The

result is double.

7

37

Exercise: Expression Types
int x = 5, y = 2;

float f = 2.0;

double d = 5;

What is the result of “x/y”?

 What is the type of “x/y”?

What is the result of “x/f”?

 What is the type of “x/f”?

What is the result of “d/f”?

 What is the type of “d/f”?
38

Explicit Conversions (Type Casting)
We can also explicitly change type

Type cast operator: (type-name) operand

int A = 9, B = 2;

float C;

C = A / B;

C = A /(float)B;

Doesn’t change the value of B,
just changes the type to float

/* C is 4.0 */

/* C is 4.5*/

39

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab Exercises

39

Assignment Statements
An assignment statement changes the value of a variable

Format:

variable = expression;

 Assignment statements end with a semi-colon

 The single variable to be changed is always on the left of the
assignment operator ‘=’

 On the right of the assignment operator can be a
 Constant

age = 21;

 Variable

my_cost = your_cost;

 Expression

circumference = diameter * 3.14159;
40

Assignment Statements and Algebra

The ‘=’ operator in C++ is not an equal sign

 The following statement cannot be true in algebra

number_of_bars = number_of_bars + 3;

 In C++, it means the new value of number_of_bars is the
previous value of number_of_bars plus 3

41 42

Type Conversions across Assignments

It is better that
 the type of the variable on the left of assignment operator ‘=’ is the

same as the type of the expression on the right.

But C++ allows the types to be different

The value of the right side is converted to the type of the left,
and then assigned to the variable on the left

int i = 512;
double x;
x = i; /*value of i is converted to double*/

8

43

Type Conversions across Assignments

If the left side is of smaller range or precision, information
may be lost (should avoid)

 float to int truncates any fractional part.

float f = 123.6;
int i;
i = f; (what is the value of i?)

 If the value of float is out of the int range, float to int
results in strange value.

float f = 2e34;
int i;
i = f ; (what is value of i?)

44

Type Conversion - Examples

int x=5, y=2, w;
double z, q = 2;

w = x/y;

// w = 2
z = x/y;

// z = 2.0
z = x/q;

// z = 2.5
w = x/q;

// w = 2

char  int
The following actions are possible but generally not

recommended!

It is possible to store char values in integer variables

int v = 'A';

variable v will contain an integer (65) representing 'A'

It is possible to store int values in char variables

char letter = 65;

cout << letter;

This will print A on the screen.

45

bool  int
The following actions are possible but generally not

recommended!

Values of type bool can be assigned to int variables
 True is stored as 1

 False is stored as 0

Values of type int can be assigned to bool variables
 Any non-zero integer is stored as true

 Zero is stored as false

46

bool b=true;

int i;

i = b;

cout << b; // This will output 1

Shorthand Assignment Operators
Some expressions occur so often that C++ contains to

shorthand operators for them

All arithmetic operators can be used this way
 +=

count += 2; means count = count + 2;

 *=
bonus *= 2; means bonus = bonus * 2;

 /=
x /= y; means x = x / y;

 %=
rem %= (cnt1 + cnt2); means

rem = rem % (cnt1+ cnt2);

47 48

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab exercises

48

9

Input and Output
A data stream is a sequence of data

 Typically in the form of characters or numbers

An input stream is data for the program to use
 Typically originates

 at the keyboard (standard input)

 at a file

An output stream is the program’s output
 Destination is typically

 the monitor (standard output)

 a file

49

Output using cout
cout is an output stream sending data to the monitor

The insertion operator "<<" inserts data into cout

Example:
cout << number_of_bars << " candy bars\n";

 This line sends two items to the monitor
 The value of number_of_bars

 The quoted string of characters " candy bars\n"
 Notice the space before the ‘c’ in candy

 The ‘\n’ causes a new line to be started following the ‘s’ in bars

 A new insertion operator is used for each item of output

50

Examples Using cout
This produces the same result as the previous sample

cout << number_of_bars ;
cout << " candy bars\n";

Below arithmetic is performed in the cout statement:
cout << "Total cost is $" << (price + tax);

Quoted strings are enclosed in double quotes ("Walter")
 Don’t use two single quotes (')

A blank space can also be inserted with

cout << " " ;

if you do not put a string in the front of "candy bars\n"

51

Escape Sequences
Escape sequences tell the compiler to treat characters in a

special way

'\' is the escape character
 To create a newline in output use \n like in:

cout << "\n";

or the newer alternative:

cout << endl;

 Other escape sequences:

\t -- a tab
\\ -- a backslash character
\" -- a quote character

52

Example:
cout << sum << "\n";

is the same as:
cout << sum << endl;

Include Directives
The include directives add library files to our programs

 To make the definitions of the cin and cout available to
the program:

#include <iostream>

The using directives include a collection of defined names

 To make the names cin and cout available to the program:

using namespace std;

53

Example 1
Write a C++ program

that outputs:

XXX

X X

X

X

X

X

X X

XXX

54

Program:
#include<iostream>

using namespace std;

int main()

{

cout << " XXX\n";

cout << " X X\n";

cout << "X\n";

cout << "X\n";

cout << "X\n";

cout << "X\n";

cout << " X X\n";

cout << " XXX\n";

return 0;

}

This 4 lines can be replaced with

cout << "X\nX\nX\nX\nX\n";

10

Example 2 of Escape Sequences
Writing a C++ program which outputs the following line to

the screen:

Use \n to insert a newline in cout!

Program:

#include<iostream>

using namespace std;

int main()

{

cout << "Use \\n to insert a newline in cout!\n";

return 0;

}

55

Example 3 of Escape Sequences
Writing a C++ program which outputs the following line to

the screen:

Say "Hello" to the nice people!

Program:

#include<iostream>

using namespace std;

int main()

{

cout << "Say \"Hello\" to the nice people!\n";

return 0;

}

56

Formatting the Output of Real Numbers
Real numbers (such as type double) can be displayed in a

variety of formats
 If the absolute value of the number is not too small or too big, it

is displayed in the fixed-point format (ordinary notation)
double price = 78.5;
cout << "The price is $" << price << endl;

The output is:
The price is $78.5

 If it is too big or small, it is displayed in the e-notation:
double price = 1234567.12;
cout << "The price is $" << price << endl;

The output is:
The price is $1.23457e+06

57

Formatting the Output of Real Numbers

Sometimes, we would like to output the real numbers with
certain format and precision
 E.g., we would like to control the number of decimal places

displayed.

For example,
double price = 78.5;
cout << "The price is $" << price << endl;

 The default output of the above is:

The price is $78.5

 But preferred format of output for money amount is :

The price is $78.50

58

Showing Decimal Places

59

cout includes tools to specify the output of type double

To specify fixed point notation
 setf(ios::fixed)

To specify that the decimal point will always be shown
 setf(ios::showpoint)

To specify that two decimal places will always be shown
 precision(2)

Example:
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);
cout << "The price is $" << price << endl;

Input Using cin
cin is an input stream bringing data from the keyboard

The extraction operator (>>) removes data to be used

Example:
cout << "Enter the number of bars in a package\n";
cout << " and the weight in ounces of one bar:\n";
cin >> number_of_bars;
cin >> one_weight;

This code prompts the user to enter data then reads two data
items from cin
 The first value read is stored in number_of_bars

 The second value read is stored in one_weight

 Data is separated by white spaces (space, newline or tab) when entered

60

11

Reading Data From cin
Multiple data items are separated by white spaces

Data is not read until the enter key is pressed
 Allows user to make corrections

Example:
cin >> v1 >> v2 >> v3;

 Requires three white space separated values

 User might type:

34 45 12 <enter key>

or

34

45 12 <enter key>
61 62

Outline
Variables

Data types

Constants

Expressions

Assignment statements

I/O statements

Lab exercises

62

Exercise 1
Write a C++ program named lab2ex1.cpp that

• prompts the user to input a value for real-valued variable x. The
prompt message is “Please enter the value for x:”

• computes the value for y given the inputted value for x, where
y=2x2+1

• outputs to the screen “The y value is”, followed by the
calculated y value.

63

Exercise 2
Write a C++ program named lab2ex2.cpp that

• prompts the user to enter the scores for the first, second and third
games. The scores are whole numbers and thus should be stored
in integer variables.

• calculates the average score
• outputs “The average score is:”, followed by the

calculated average score, shown with two decimal digits after the
decimal points.

64

Exercise 3
Write a C++ program named lab2ex3.cpp that

• prompts the user to enter a distance in miles
• converts the distance value into kilometers. Note that 1 mile

equals to 1.61 kilometers.
• outputs the following to the screen:

m miles is k kilometers

where m is the miles value the user inputted and k is the
converted kilometer value. Both values should have one digit
after the decimal point. For example, if the user inputs 8, your
program should display the following to the screen:

8.0 miles is 12.9 kilometers

65

Exercise 4
Write a C++ program named lab2ex4.cpp that

• prompts the user to enter a number of quarters, dimes, and
nickels

• outputs the monetary value of the coins in dollars.
• For example, if the user enters 2 for the number of quarters, 3 for

the number of dimes, and 1 for the number of nickels, then the
program should output:

The coins are worth $0.85.

Note that the value should be shown using ordinary notation and
with two decimal places.

66

12

Exercise 5
Write a C++ program named lab2ex5.cpp that

• prompts the user to enter a time in seconds
• outputs how far an object would drop if it is in free fall for that

length of time
• Assume that the object starts at rest, there is no friction or

resistance from air, and there is a constant acceleration of 32 feet
per second due to gravity. Use the equation:

Please use a declared constant for acceleration.

 For example, if the user enters 9 for the length of time, your
program should output:

The object would drop 1296 feet during 9 seconds.

67

2

2timeonaccelerati
distance




Exercise 6
Write a C++ program named lab2ex6.cpp that

• See Question 14 on Page 59 in the textbook

68

How to submit your programs
Two ways:

 Use the submit command on Linux command line

submit 5910 lab2 lab2ex3.cpp

This will submit your file lab2ex3.cpp to the lab2 directory
under

/cse/dept/course/2012-13/F/5910/submit/

 Submit through the web site:

https://webapp.cse.yorku.ca/submit/

Please choose the correct course and lab ids to submit your files.

69

