
1

CSE 5910
Control Flow

Instructor: Aijun An
D f C S i d E i i

1

Department of Computer Science and Engineering
York University

aan@cse.yorku.ca

http://www.cse.yorku.ca/course/5910
1

Outline
Control Flow
Two-way Branch

• if-else statement
Boolean Expressions
M lti B h

2

Multi-way Branches
• Nested if-else statement
• switch statement

Programming Style
Lab exercises (mixed with the above contents)

2

Flow of Control
A computer program is a sequence of statements.

Flow of control
• The order in which statements are executed

In a simple program the statements are executed one after

3

In a simple program, the statements are executed one after
the other in the order that they are typed.

But in many situations we need programs in which
• statements are not necessarily executed in the order that they

are typed.
• different commands are executed when the program runs with

different input variables.

Types of Control Flow

Three types of control flow structures:
• Sequence

• A group of statements are executed in the order they are typed, which
specifies sequential flow.

• Branch

4

• The program chooses between alternatives.
• Depending on a given condition, the program decides

• whether a certain statement or group of statements should be executed.
• which statement or group of statements should be executed.

• Loop
• Repeatedly execute one statement or a group of statements

Branch Example
To calculate the weekly wage of an employee there are two

choices:
• Regular time (up to 40 hours)

• gross_pay = hourly_rate * hours;

• Overtime (over 40 hours)
• gross_pay = hourly_rate * 40 + 1.5 * hourly_rate * (hours - 40);

• The program must choose which of these expressions to use

5

Designing the Branch
Let the user input the number of hours
Decide whether (hours >40) is true

• If it is true, then use
gross_pay = hourly_rate * 40 + 1.5 * hourly_rate * (hours - 40);

• If it is not true, then use,
gross_pay = hourly_rate * hours;

6

2

Implementing the Branch

The if-else statement is used in C++ to perform a
branch

if (hours > 40)
gross_pay = rate * 40 + 1.5 * rate * (hours - 40);

else
gross_pay = rate * hours;

7

Whole
Program

Introduction8

Syntax for the if-else Statement
A single statement for each

alternative:

if (Boolean_Expression)
Yes_statement

else
No_statement

A sequence of statements for
each alternative:
if (Boolean_Expression)
{

Yes_statement_1
Yes_statement_2

…

() is a must

9

Yes_statement_last
}
else
{

No_statement_1
No_statement_2

…
No_statement_last

}

Braces are necessary
when there is more than
one statement in a block!
They make a compound
statement.

Compound Statements
A compound statement consists of one or more statements

enclosed in {}. It is also called a block.

Branches of if-else statements often need to execute
more that one statement. A block should be used.

Example: if (my score > your score)a p e: (y_sco e you _sco e)
{

cout << “I win!\n”;
wager = wager + 100;

}
else
{
cout << “I wish these were golf scores.\n”;
wager = 0;

}10

The else clause in if-else statement is optional:

Syntax:
if (Boolean_Expression)

Yes_statement

or

Syntax for the if Statement

or
if (Boolean_Expression)
{

Yes_statement_1
Yes_statement_2

…
Yes_statement_last

}

11

Display the ticket price
• senior has 10% discount

int price =50;

cout << "Enter your age: ";
cin >> age;

Example of the if Statement

cin >> age;
if (age > 64)

price = price*0.9;
cout << "Your ticket price is: $" << price << endl;

12

3

What is the output of the following piece of program?

float x, y;
cout << "Enter a value: ";
cin >> x;
y=x;

Example of the if Statement

if (x<0)
y=-x;

cout << y << endl;

13

Outline
Control Flow
Two-way Branch

• if-else statement
Boolean Expressions
M lti B h

14

Multi-way Branches
• Nested if-else statement
• switch statement

Programming Style
Lab exercises (mixed with the above contents)

14

Boolean Expressions
Boolean expressions are expressions whose value is either
true or false

Boolean expressions are formed by combining variables,
constants and expressions using relational and/or logical
operators
• A relational operator (<, >, ==, <=, >=, !=)A relational operator (<, >, , < , > , !)

• compares two values
• forms a relational expression

• A logical operator (&&, ||, !)
• exams true/false statements
• forms a logical expression

Examples:
hours>40, age>=20, (x==y)&&(x!=z)

15

Both are boolean
expressions

Relational operators
Relational operators:

<, >, ==, <=, >=, !=
• < less than
• > greater than
• == equal to or equivalent to
• <= less than or equal to

No spaces are allowed
between the symbols!

• < less than or equal to
• >= greater than or equal to
• != not equal or inequality

A relational operator compares two operands, which can be
numbers, variables, math expressions.

Examples:
hours>40, age>=20, x==y, answer=='y', (x+y)!=2*z

16

These expressions are called
relational expressions.

Exercise 1
Assume x is 15 and y is 25, what are the values of the

following expressions?

• x!=y
Value:

true
• x<x

17

x<x
Value:

false
• x>=y-x
Value:

true
• (x+5)==(y-x)
Value:

false

Logical Operators
Logical operators:

&&, ||, !

• && logic AND operator
• A && B is true only if both A and B are true; otherwise it is false

• || logic OR operator
• A||B is true if either A or B or both are true; otherwise it is false

No spaces are allowed
between the symbols
in && and ||!

|| ;

• ! logic NOT operator
• !A is true if A is false; otherwise it is false

• Examples:
• (score>70) && (score<=80)
• (answer==‘y’)||(answer==‘Y’)
• !(x==1)

18

These expressions
are called logical
expressions.

4

Logical Operators (Cont’d)
Operands for a logical operator are usually relational

expressions:
• x>2 && y<=2
• x>2 || y<=2
• !(x>2)

Operands can be other logical expressions:

19

• (x>2 && y==2)||(y<0)
• x>2 && (y<=2 || y>10)

Operands can be numbers as well
• 3 && 0
Value:

false
• !0
Value:

1

• A nonzero number is true
• A zero number is false

The NOT operator (!)
! negates any boolean expression

• !(x < y)

• True if x is NOT less than y

• !(x == y)

• True if x is NOT equal to y

equivalent to x>=y

equivalent to x!=y

• True if x is NOT equal to y

! Operator can make expressions difficult to understand
• Before using the ! operator, see if you can express the

same idea more clearly without the ! operator
• use only when appropriate

20

Pitfall: Using = or ==
' = ' is the assignment operator

• Used to assign values to variables
• Example: x = 3;

'== ' is the equality operator
• Used to compare values

E l• Example: if (x == 3)

The compiler will accept the following:
if (x = 3)

• x=3 is an assignment expression, so it stores 3 in x instead of comparing x
and 3

• In C++, an assignment expression has a value which is the value assigned to
the variable

• The value is 3 in the above example. Since 3 is non-zero, the expression
(x=3)is true21

Order of Precedence
Arithmetic, relational, and logical operators can all be used

in expressions

When they are used together, the following order of
precedence is used in C++:

Precedence Operation

1 Parentheses (if nested parentheses exist the inner have precedence)

22

1 Parentheses (if nested parentheses exist, the inner have precedence)

2 Logical NOT (!), unary minus (-)

3 Multiplication, division, modulus (*, /, %)

4 Addition, subtraction (+, -)

5 Relational operators (>,<,>=,<=,==, !=)

6 Logical AND (&&)

7 Logical OR (||)

Precedence Rules
Items in expressions are grouped by precedence rules for

arithmetic and boolean operators
• Operators with higher precedence are performed first
• Binary operators with equal precedence are performed

left to right
>2 && < 2x>2 && y<=2

• Unary operators of equal precedence are performed
right to left

!!(x>3)

23

1 23

123

Precedence Rule Example
The expression

(x+1) > 2 || (x + 1) < -3

is equivalent to
((x + 1) > 2) || ((x + 1) < -3)

• Because > and < have higher precedence than ||

and is also equivalent to
x + 1 > 2 || x + 1 < - 3

24

5

More Examples
Evaluating x + 1 < -(3+2) || x + 1 > 2

• Using the precedence rules
• First apply the + in ()
• Next apply the unary –
• Next apply the other +'s
• Now apply the < and >
• Finally do the | |

Evaluating x+2>1 || y<2 && z >= 3

25

1 3 4562

Short-Circuit Evaluation
Some boolean expressions do not need to be completely

evaluated
• if x is negative, the value of the expression

(x >= 0) && (y > 1)
can be determined by evaluating only (x >= 0)

C++ uses short-circuit evaluation
• If the value of the leftmost sub-expression determines the

final value of the expression, the rest of the expression is not
evaluated

26

Evaluating Boolean Expressions
Assume that y is 8, the expression

!(y < 3 || y > 7)

is evaluated in the following sequence
!(false || y>7)

If not sure, can use parenthesis
• The above expression can be equivalently written as:

!((y < 3) || (y > 7))
27

!(true)

false

!(false || true)

Evaluating Boolean Expressions
Assume that y is 8, the expression

!(y < 3)|| y > 7

is evaluated in the following sequence
!(false)|| y>7

28

true

true || y>7

Evaluating Boolean Expressions
Assume that y is 8, the expression

!y < 3 || y > 7

is evaluated in the following sequence
0 < 3 || y > 7

29

true

true || y>7

Using Short-Circuit Evaluation
Short-circuit evaluation can be used to prevent run time

errors
• Consider this if-statement

if ((kids != 0) && (pieces / kids >= 2))
cout << "Each child may have two pieces!";

• If the value of kids is zero, short-circuit evaluation prevents
evaluation of (pieces/0 >= 2)
• Division by zero causes a run-time error

30

6

Examples
How to express 1 < x ≤ 2 in C++ ?

(x>1)&&(x<=2)

Not:
1<x<=2

31

More examples:
x=2;
The value of(x>1)&&(x<=2) is:

true

x=2; y=1;
The value of (x+y)>5||(x-y)<1 is:

false

y=1;
The value of !y is:

false

y=5;
The value of !y is:

false

Exercise 2

Write an expression to test each of the following:
• age is from 18 to 21 inclusive

18<=age && age<=21

• water is less than 1.5 and also greater than 0.1

32

water<1.5 && water>0.1

• speed is not greater than 55
speed<=55

• w is either equal to 6 or not greater than 3
w==6 || w<=3

Exercise 3
Write a C++ program that

• prompts the user to input two numbers. The prompts
are:
Input the first number:
Input the second number:

• output the bigger number on the screen by displaying:

33

output the bigger number on the screen by displaying:
The bigger number is n.

where n is the inputted bigger number.

Solution to Exercise 3
#include<iostream>
using namespace std;

int main()
{
int x, y, bigger;

cout << "Please enter the first number: ";
cin >> x;
cout << "Please enter the second number: ";

34

cout << Please enter the second number: ;
cin >>y;

if (x>y)
bigger = x;

else
bigger = y;

cout << "The bigger number is " << bigger << endl;

return 0;
}

Exercise 4
Write a C++ program that tells whether an input number is

divisible by 4. The program should do the following:
• Prompt the user to enter a number.
• If the number is divisible by 4, output the following message

on the screen:
It is divisible by 4

35

• If the number is not divisible by 4, output the following
message on the screen:

It is not divisible by 4

Solution to Exercise 4
#include<iostream>
using namespace std;

int main()
{

int x;

36

cout << "Please enter an integer: ";
cin >> x;

if (x%4 == 0)
cout << "It is divisible by 4\n";

else
cout << "It is not divisible by 4\n";

return 0;
}

7

Outline
Control Flow
Two-way Branch

• if-else statement
Boolean Expressions
M lti B h

37

Multi-way Branches
• Nested if-else statement
• switch statement

Programming Style
Lab exercises (mixed with the above contents)

37

Multiway Branches
The if-else statement allows us to create two-way

branches in a program

Sometimes, it is necessary to select one out of a number of
alternative actions

Th if l t t t b d t f lti• The if-else statement can be used to form multiway
branches

An if-else statement can be a subpart of another if-
else statement.
• This forms a nested if-else statements

38

Nested Statements
A statement that is a subpart of another statement is a

nested statement
• When writing nested statements it is normal to indent each

level of nesting

Example:
if (gender == ‘M’)

if (hight > man_average_hight)
cout << “You are taller than average" << endl;

else
cout << "You are shorter than average" << endl;

else
if (hight > wonman_average_hight)

cout << “You are taller than average" << endl;
else

cout << "You are shorter than average" << endl;

39
Nested statements are indented to show the logical structure.

Nested if-else Statements
Nested if-else statements can implement multi-way

branches.
But use care in nesting if-else statements

Example:
• For the example in the last slide, if we only output the message

when the person’s height is above the average, then you may
want to write:
if (gender == ‘M’)

if (hight > man_average_hight)
cout << “You are taller than average" << endl;

else
if (hight > wonman_average_hight)

cout << “You are taller than average" << endl;

• This would compile and run, but does not produce the desired results
• The compiler pairs the "else" with the nearest previous "if"

40

Braces and Nested Statements
To solve the problem in the last slide, use braces to enclose

the nested if statement especially when it does not have
an else part:
if (gender == ‘M’)
{

if (hight > man_average_hight)
cout << “You are taller than average" << endl;cout << “You are taller than average" << endl;

}
else
{

if (hight > wonman_average_hight)
cout << “You are taller than average" << endl;

}

Braces tell the compiler how to group things.
• They make a compound statement.

41

Multi-way if-else-statements
An if-else statement is a two-way branch
Three or four (or more) way branches can be designed using

nested if-else statements
Example:

• The following nested statements implement the hints for a
number guessing game:number guessing game:

if (guess > number)
cout << "Too high.";

else
if (guess < number)

cout << "Too low.");
else

if (guess == number)
cout << "Correct!";

42

8

Indenting Nested if-else
Notice how the code on the previous slide crept across the

page leaving less and less space

Use the following for indenting such nested if-else-
statements:

if (guess> number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.");

else if (guess == number)
cout << "Correct!";

43

The Final if-else-statement
When the conditions tested in an if-else-statement include all

the situations, the final “if” can be omitted.

The previous example can be written as

if (guess> number)
cout << "Too high.";cout << Too high. ;

else if (guess < number)
cout << "Too low.");

else
cout << "Correct!";

This is a commonly-used form of multi-way if-else statement.

44

Syntax for Multiway if-else Statement

A multiway if-else statement is written as

if(Boolean_Expression_1)
Statement_1

else if (Boolean_Expression_2)
Statement_2
…

else if (Boolean_Expression_n)
Statement _n

else
Statement_For_All_Other_Possibilities

Statement_i can be a single statement or a compound statement
(that is a sequence of statements enclosed by {})

45

Exercise 5
Write a C++ program that

• prompts the user to input a value for variable x, and
• computes the value for y given the inputted value for x, where

⎪
⎧ ≤ 0 if0

2x
x

46

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

>

≤<−−

≤<
=

2 if1

21 if1
2

2

10 if
2

2

x

xxx

xx

y

Solution to Exercise 5
#include<iostream>
using namespace std;

int main()
{
double x, y;

cout << "Enter a value for x: ";
cin >> x;

if (x<=0)
y=0;

else if (x<=1)
y=x*x/2;

else if (x<=2)
y=2*x-x*x/2-1;

else
y=1;

cout << "y=" << y << endl;
return 0;

}47

Exercise 6
Write a C++ program that

• Prompt the user to input his/her income
• computes tax according to the following rate schedule:

No tax on first $15,000 of income

5% tax on each dollar from $15,001 to $25,000

10% tax on each dollar over $25,000

• Output to the screen:

Your income tax is $x.

where x is calculated tax and should be shown with two decimal
places.

48

9

Outline
Control Flow
Two-way Branch

• if-else statement
Boolean Expressions
M lti B h

49

Multi-way Branches
• Nested if-else statement
• switch statement

Programming Style
Lab exercises (mixed with the above contents)

49

The switch statement
The switch-statement is an alternative for constructing multi-

way branches
Syntax:

switch (controlling expression)
{

case Constant_1:
Statement Sequence 1

() is a must

Statement_Sequence_1
break;

case Constant_2:
Statement_Sequence_2
break;

. . .
case Constant_n:

Statement_Sequence_n
break;

default:
Default_Statement_Sequence

}
50

Example of switch Statement
char grade;
cout << "Enter you grade: ";
cin >> grade;
switch (grade)
{

case 'A':
cout << "Excellent.\n";
cout << “Keep up the good work!\n";
break;

case 'B':case B :
cout << "Very good.\n";
break;

case 'C':
cout << "OK.\n";
break;

case 'D':
case 'F':

cout << "Not good.\n";
cout << "Go study!\n";
break;

default:
cout << "That is not a possible grade.\n";

}51

• Grades 'A', 'B', and 'C' each
have a branch

• Grades 'D' and 'F' use the
same branch

• If an invalid grade is entered,
a default branch is used

The Controlling Expression
A switch statement's controlling expression must return a

value of one of these types:
• A character
• An integer type
• A bool value
• An enum constant (to be described later if we have time)• An enum constant (to be described later if we have time)

The value returned is compared to the constant values after
each "case"
• When a match is found, the code for that case is used

52

The break Statement
The break statement

• terminates the execution of the switch statement (or a loop
statement to be studied later)

• continues with the statements after the switch statement (or a
loop statement)

Omitting the break statement in a branch of the switch statementOmitting the break statement in a branch of the switch statement
will cause the code for the next case to be executed!

x=0;
switch (x)
{

case 0: cout << "Hello\n";
case 1: cout << "Goodbye\n";

}

What is printed?53

The break Statement (Cont’d)
The benefit of this “fall-through” by omitting break:

• Allow the use of the same code for multiple cases:
case 'D':
case 'F':

cout << "Not good.\n";
cout << "Go study!\n";
break;break;

• Another example :
• case 'A':
case 'a':

cout << "Excellent.";
break;

• Runs the same code for either 'A' or 'a'

54

10

The default Branch
If no case label has a constant that matches the value of the

controlling expression, the statements following
the default label are executed

The default branch is optional p
• If there is no default branch, nothing happens when no case label

matches the value of the controlling expression
• It is a good idea to include a default section

55

Case Labels in Switch
All cases must be:

• unique (cannot duplicate cases)
• a constant expression

• case 2 is ok
• case 2*3: is ok.

56

• case C: is ok if C is a named constant (e.g., defined by
const int C=8)

• case C+1: is ok if C is a named constant
• case 2*x: is invalid if x is a variable

Exercise 7
Write a C++ program that

• prompts the use to enter the wattage of a bulb
• outputs the expected brightness of a standard light bulb with

the inputted wattage, according to the following table.

Watts Brightness (in Lumens)

57

15 125
25 215
40 500
60 880
75 1000
100 1675

Solution to Exercise 7

58

Outline
Control Flow
Two-way Branch

• if-else statement
Boolean Expressions
M lti B h

59

Multi-way Branches
• Nested if-else statement
• switch statement

Programming Style
Lab exercises (mixed with the above contents)

59

Program Style

A program written with attention to style
• is easier to read
• easier to correct
• easier to change

60

11

Program Style - Indenting
Items considered a group should look like a group

• Use an empty line between logical groups of statements
• Indent statements within statements

if (x == 0)
statement;

Braces {} create groups
• Indent within braces to make the group clear
• Braces placed on separate lines are easier to locate

61

Program Style - Comments
Comments are explanatory notes in the program for the

programmer to read.

Two ways to add comments in C++ programs:
• Use // for a single line comment
• Use /* and */ for multiple line commentsp

62

Program Style - Comments
// is the symbol for a single line comment

• All text on the line following // is ignored by the compiler
• Example:

//calculate regular wages
gross_pay = rate * hours;

or put the comments at the end of a line:p
gross_pay = rate * hours; //calculate regular wages

/* and */ enclose multiple line comments
• Example:

/* This is a program that displays
the expected brightness of a
standard light bulb with an
inputted wattage.

*/
63

More on Comments
/* This is a valid comment */

/* So
is this.

*/

/* This works

64

/* This works
* and looks nice
*/

/* This doesn’t do
/* what you think it would do */

*/

Exercise 8
Write a C++ program that

• asks the users to enter 5 numeric marks in the range
of [0, 100].

• counts and outputs the number of input marks that are
at least 60.

65

