
Online Learning and StochasticApproximationsL�eon BottouAT&T Labs{ResearchRed Bank, NJ07701 AbstractThe convergence of online learning algorithms is analyzed using thetools of the stochastic approximation theory, and proved under veryweak conditions. A general framework for online learning algorithms is�rst presented. This framework encompasses the most common onlinelearning algorithms in use today, as illustrated by several examples.The stochastic approximation theory then provides general results de-scribing the convergence of all these learning algorithms at once.1 IntroductionAlmost all of the early work on Learning Systems focused on online algo-rithms (Hebb, 1949) (Rosenblatt, 1957) (Widrow and Ho�, 1960) (Amari,1967) (Kohonen, 1982). In these early days, the algorithmic simplicity of on-line algorithms was a requirement. This is still the case when it comes tohandling large, real-life training sets (LeCun et al., 1989) (M�uller, Gunzingerand Guggenb�uhl, 1995).The early Recursive Adaptive Algorithms were introduced during the sameyears (Robbins and Monro, 1951) and very often by the same people (Widrowand Stearns, 1985). First developed in the engineering world, recursive adap-tation algorithms have turned into a mathematical discipline, namely Stochas-tic Approximations (Kushner and Clark, 1978) (Ljung and S�oderstr�om, 1983)(Benveniste, Metivier and Priouret, 1990).Although both domains have enjoyed the spotlights of scienti�c fashion atdi�erent times and for di�erent reasons, they essentially describe the same el-ementary ideas. Many authors of course have stressed this less-than-fortuitoussimilarity between learning algorithms and recursive adaptation algorithms(Mendel and Fu, 1970) (Tsypkin, 1971).The present work builds upon this similarity. Online learning algorithmsare analyzed using the stochastic approximation tools. Convergence is char-acterized under very weak conditions: the expected risk must be reasonablywell behaved and the learning rates must decrease appropriately.1



2 L�eon BottouThe main discussion describes a general framework for online learning al-gorithms, presents a number of examples, and analyzes their dynamical prop-erties. Several comment sections illustrate how these ideas can be generalizedand how they relate to other aspects of learning theory. In other words, themain discussion gives answers, while the comments raise questions. Casualreaders may skip these comment sections.2 A Framework for Online Learning SystemsThe starting point of a mathematical study of online learning must be amathematical statement for our subjective understanding of what a learningsystem is. It is di�cult to agree on such a statement, because we are learningsystems ourselves and often resent this mathematical reduction of an essentialpersonal experience.This contribution borrows the framework introduced by the Russian school(Tsypkin, 1971; Vapnik, 1982). This formulation can be used for understand-ing a signi�cant number of online learning algorithms, as demonstrated bythe examples presented in section 3.2.1 Expected Risk FunctionIn (Tsypkin, 1971; Tsypkin, 1973), the goal of a learning system consists of�nding the minimum of a function J(w) named the expected risk function.This function is decomposed as follows:J(w) 4= EzQ(z; w) 4= Z Q(z; w) dP (z) (2.1)The minimization variable w is meant to represent the part of the learningsystem which must be adapted as a response to observing events z occurringin the real world. The loss function Q(z; w) measures the performance ofthe learning system with parameter w under the circumstances described byevent z. Common mathematical practice suggests to represent both w and zby elements of adequately chosen spaces W and Z.The occurrence of the events z is modeled as random independent obser-vations drawn from an unknown probability distribution dP (z) named thegrand truth distribution. The risk function J(w) is simply the expectationof the loss function Q(z; w) for a �xed value of the parameter w. This riskfunction J(w) is poorly de�ned because the grand truth distribution dP (z)is unknown by hypothesis.Consider for instance a neural network system for optical ZIP code recog-nition, as described in (LeCun et al., 1989). An observation z is a pair (x; y)composed of a ZIP code image x and its intended interpretation y. Param-eters w are the adaptable weights of the neural network. The loss function



Online Learning and Stochastic Approximations 3Q(z; w) measures the economical cost (in hard currency units) of deliveringa letter marked with ZIP code z given the answer produced by the networkon image x. This cost is minimal when the network gives the right answer.Otherwise the loss function measures the higher cost of detecting the errorand re-routing the letter.CommentsProbabilities are used in this framework for representing the unknown truthunderlying the occurrences of observable events. Using successive observationszt, the learning system will uncover a part of this truth in the form of param-eter values wt that hopefully decrease the risk functional J(wt). This use ofprobabilities is very di�erent from the Bayesian practice, where a probabilitydistribution represents the increasing knowledge of the learning system. Bothapproaches however can be re-conciliated by de�ning the parameter space W asa another space of probability distributions. The analysis then must carefullyhandle two di�erent probability distributions with very di�erent meanings.In this framework, every known fact about the real world should be removedfrom distribution dP (z) by properly rede�ning the observation space Z and ofthe loss function Q(z; w). Consider for instance that a known fraction of the ZIPcode images are spoiled by the image capture system. An observation z can befactored as a triple (�; x; y) composed of an envelope x, its intended ZIP code y,and a binary variable � indicating whether the ZIP code image is spoiled. Theloss function can be rede�ned as follows:J(w) = Z Q(z; w) dP (�; x; y)= Z �Z Q(z; w) dP (�jx; y)� dP (x; y)The inner integral in this decomposition is a new loss function Q0(x; y; w) whichmeasures the system performance on rede�ned observations (x; y). This new lossfunction accounts for the known de�ciencies of the image capture system. Thisfactorization technique reveals a new probability distribution dP (x; y) which isno longer representative of this a priori knowledge.This technique does not apply to knowledge involving the learning systemitself. When we say for instance that an unknown function is smooth, we meanthat it pays to bias the learning algorithm towards �nding smoother functions.This statement does not describe a property of the grand truth distribution.Its meaning is attached to a particular learning system. It does not suggests arede�nition of the problem. It merely suggests a modi�cation of the learningsystem, like the introduction of a regularization parameter.2.2 Gradient Based LearningThe expected risk function (2.1) cannot be minimized directly because thegrand truth distribution is unknown. It is however possible to compute an
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Figure 1: Batch Gradient Descent. The parameters of the learn-ing system are updated using the gradient of the empirical riskĴL de�ned on the training set.approximation of J(w) by simply using a �nite training set of independentobservations z1; : : : ; zL.J(w) � ĴL(w) 4= 1L LXn=1Q(zn; w) (2.2)General theorems (Vapnik, 1982) show that minimizing the empirical riskĴL(w) can provide a good estimate of the minimum of the expected risk J(w)when the training set is large enough. This line of work has provided a wayto understand the generalization phenomenon, i.e. the ability of a systemto learn from a �nite training set and yet provide results that are valid ingeneral.2.2.1 Batch Gradient DescentMinimizing the empirical risk ĴL(w) can be achieved using a batch gradientdescent algorithm. Successive estimates wt of the optimal parameter are com-puted using the following formula (�gure 1) where the learning rate t is apositive number.wt+1 = wt � trw ĴL(wt) = wt � t 1L LXi=1rwQ(zn; wt) (2.3)The properties of this optimization algorithm are well known (section 4.2).When the learning rate t are small enough, the algorithm converges to-wards a local minimum of the empirical risk ĴL(w). Considerable convergencespeedups can be achieved by replacing the learning rate t by a suitable def-inite positive matrix (Dennis and Schnabel, 1983).Each iteration of the batch gradient descent algorithm (�gure 1) howeverinvolves a burdening computation of the average of the gradients of the lossfunction rwQ(zn; w) over the entire training set. Signi�cant computer re-sources must be allocated in order to store a large enough training set andcompute this average.
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Figure 2: Online Gradient Descent. The parameters of the learn-ing system are updated using information extracted from realworld observations.2.2.2 Online Gradient DescentThe elementary online gradient descent algorithm is obtained by dropping theaveraging operation in the batch gradient descent algorithm (2.3). Instead ofaveraging the gradient of the loss over the complete training set, each iterationof the online gradient descent consists of choosing an example zt at random,and updating the parameter wt according to the following formula.wt+1 = wt � trwQ(zt; wt) (2.4)Averaging this update over all possible choices of the training example ztwould restore the batch gradient descent algorithm. The online gradient de-scent simpli�cation relies on the hope that the random noise introduced bythis procedure will not perturbate the average behavior of the algorithm.Signi�cant empirical evidence substantiate this hope.Online gradient descent can also be described without reference to a train-ing set. Instead of drawing examples from a training set, we can directly usethe events zt observed in the real world, as shown in �gure 2. This formu-lation is particularly adequate for describing adaptive algorithms that simul-taneously process an observation and learn to perform better. Such adaptivealgorithms are very useful for tracking a phenomenon that evolves in time.An airplane autopilot, for instance, may continuously learn how commandsa�ect the route of the airplane. Such a system would compensate for changesin the weather or in petrol weight.CommentsFormulating online gradient descent without reference to a training set presentsa theoretical interest. Each iteration of the algorithm uses an example zt drawnfrom the grand truth distribution instead of a �nite training set. The averageupdate therefore is a gradient descent algorithm which directly optimizes theexpected risk.



6 L�eon BottouThis direct optimization shortcuts the usual discussion about di�erences be-tween optimizing the empirical risk and the expected risk (Vapnik, 1982; Vapnik,1995). Proving the convergence of an online algorithm towards the minimum ofthe expected risk provides an alternative to the Vapnik proofs of the consistencyof learning algorithms. Discussing the convergence speed of such an online algo-rithm provides an alternative to the Vapnik-Chervonenkis bounds.This alternative comes with severe restrictions. The convergence proofs pro-posed here (section 5) only address the convergence of the algorithm towardsa local minimum. We can safely conjecture that a general study of the con-vergence of an online algorithm towards a global minimum should handle thecentral concepts of the necessary and su�cient conditions for the consistency ofa learning algorithm (Vapnik, 1995).2.3 General Online Gradient AlgorithmThe rest of this contribution addresses a single general online gradient algo-rithm algorithm for minimizing the following cost function C(w).C(w) 4= EzQ(z; w) 4= Z Q(z; w) dP (z) (2.5)Each iteration of this algorithm consists of drawing an event zt from distri-bution dP (z) and applying the following update formula.wt+1 = wt � tH(zt; wt) (2.6)The learning rates t are either positive numbers or de�nite positive matrices.The update term H(z; w) ful�lls the following condition.EzH(z; w) = rw C(w) (2.7)The distribution function dP (z) can be understood as the grand truthdistribution. The cost function C(w) minimized by this algorithm is thenequal to the expected risk J(w). This setup addresses the adaptive version ofthe online gradient descent, without reference to a training set.All results however remain valid if we consider a discrete distribution func-tion de�ned on a particular training set fz1; : : : ; zLg. The cost function C(w)minimized by this algorithm is then equal to the empirical risk ĴL. This secondsetup addresses the use of online gradient descent for optimizing the trainingerror de�ned on a �nite training set.CommentsTypography conscious readers will notice the subtle di�erence between the ob-servable events z used in the cost function (2.5) and the events z drawn beforeeach iteration of the algorithm (2.6). In the simplest case indeed, these two vari-ables represent similar objects: a single example is drawn before each iteration



Online Learning and Stochastic Approximations 7of the online gradient descent algorithm. The framework described above alsoapplies to more complex cases like mini-batch or noisy gradient descent. Mini-batch gradient descent uses several examples for each iteration, collectively re-ferred to as zt. Noisy gradient descent uses a noisy update term rwC(wt) + �t.The analysis presented in this contribution holds as long as the update termful�lls condition (2.7).Finally the examples zt are assumed to be independently drawn from a sin-gle probability distribution function dP (z). In practice however, examples areoften chosen sequentially in a training set. There are tools indeed for dealingwith examples zt drawn using a Markovian process (Benveniste, Metivier andPriouret, 1990).3 ExamplesThis section presents a number of examples illustrating the diversity of learn-ing algorithms that can be expressed as particular cases of the general onlinegradient descent algorithm (section 2.3). More classical algorithms can befound in (Tsypkin, 1971).Some algorithms were designed with a well de�ned cost function, like theadaline (section 3.1.1) or the multi-layer perceptron (section 3.1.2). Other al-gorithms did not initially refer to a particular cost function, but can be refor-mulated as online gradient descent procedures, like K-Means (section 3.2.2)or LVQ2 (section 3.2.3). The cost function then provides a useful characteriza-tion of the algorithm. Finally, certain algorithms, like Kohonen's topologicalmaps (Kohonen, 1982), are poorly represented as the minimization of a costfunction. Yet some authors have found useful to coerce these algorithms intoan online gradient descent anyway (Schumann and Retzko, 1995).3.1 Online Least Mean Squares3.1.1 Widrow's AdalineThe adaline (Widrow and Ho�, 1960) is one of the few learning systemsdesigned at the very beginning of the computer age. Online gradient descentwas then a very attractive proposition requiring little hardware. The adalinecould �t in a refrigerator sized cabinet containing a forest of potentiometersand electrical motors.The adaline (�gure 3) learning algorithm adapts the parameters of a singlethreshold element. Input patterns x are recognized as class y = +1 or y = �1according to the sign of w0x + �. It is practical to consider an augmentedinput pattern x containing an extra constant coe�cient equal to 1. The bias� then is represented as an extra coe�cient in the parameter vector w. With
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Figure 3: Widrow's Adaline. The adaline computes a binary in-dicator by thresholding a linear combination of its input. Learningis achieved using the delta rule.this convention, the output of the threshold element can be written asŷw(x) 4= sign(w0x) = signXi wixi (3.1)During training, the adaline is provided with pairs z = (x; y) representing in-put patterns and desired output for the adaline. The parameter w is adjustedafter using the delta rule (the \prime" denotes transposed vectors):wt+1 = wt � t(yt � w0txt)0xt (3.2)This delta rule is nothing more than an iteration of the online gradient descentalgorithm (2.4) with the following loss function:Qadaline(z; w) 4= (y � w0x)2 (3.3)This loss function does not take the discontinuity of the threshold element(3.1) into account. This linear approximation is a real breakthrough over theapparently more natural loss function (y � ŷw(x))2. This discontinuous lossfunction is di�cult to minimize because its gradient is zero almost everywhere.Furthermore, all solutions achieving the same misclassi�cation rate wouldhave the same cost C(w), regardless of the margins separating the examplesfrom the decision boundary implemented by the threshold element.3.1.2 Multi-Layer NetworksMulti-layer networks were initially designed to overcome the computationallimitation of the threshold elements (Minsky and Papert, 1969). Arbitrarybinary mappings can be implemented by stacking several layers of thresh-old elements, each layer using the outputs of the previous layers elementsas inputs. The adaline linear approximation could not be used in this frame-work, because ignoring the discontinuities would make the entire system linear



Online Learning and Stochastic Approximations 9regardless of the number of layers. The key of a learning algorithm for multi-layer networks (Rumelhart, Hinton and Williams, 1986) consisted of noticingthat the discontinuity of the threshold element could be represented by asmooth non-linear approximation.sign(w0x) � tanh(w0x) (3.4)Using such sigmoidal elements does not reduce the computational capabilitiesof a multi-layer network, because the approximation of a step function bya sigmoid can be made arbitrarily good by scaling the coe�cients of theparameter vector w.A multi-layer network of sigmoidal elements implements a di�erentiablefunction f(x; w) of the input pattern x and the parameters w. Given an inputpattern x and the desired network output y, the back-propagation algorithm,(Rumelhart, Hinton and Williams, 1986) provides an e�cient way to computethe gradients of the mean square loss function.Qmse(z; w) = 12 (y � f(x; w))2 (3.5)Both the batch gradient descent (2.3) and the online gradient descent (2.4)have been used with considerable success. On large, redundant data sets, theonline version converges much faster then the batch version, sometimes byorders of magnitude (M�uller, Gunzinger and Guggenb�uhl, 1995). An intuitiveexplanation can be found in the following extreme example. Consider a train-ing set composed of two copies of the same subset. The batch algorithm (2.3)averages the gradient of the loss function over the whole training set, causingredundant computations. On the other hand, running online gradient descent(2.4) on all examples of the training set would amount to performing twocomplete learning iterations over the duplicated subset.3.2 Non Di�erentiable Loss FunctionsMany interesting examples involve a loss function Q(z; w) which is not di�er-entiable on a subset of points with probability zero. Intuition suggests thatthis is a minor problems because the iterations of the online gradient descenthave zero probability to reach one of these points. Even if we reach one ofthese points, we can just draw another example z.This intuition can be formalized using the general online gradient descentalgorithm (2.6). The general algorithm can use any update term H(z; w)which ful�lls condition (2.7). We assume here that the cost function C(w)is made di�erentiable when the loss function Q(z; w) is integrated with theprobability distribution dP (z).The following update term amounts to drawing another example whenever
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Figure 4: Rosenblatt's Perceptron is composed of a �xed prepro-cessing and of a trainable threshold element.we reach a non di�erentiable point of the loss function.H(z; w) = ( rwQ(z; w) when di�erentiable0 otherwise (3.6)For each parameter value w reached by the algorithm, we assume that the lossfunction Q(z; w) is di�erentiable everywhere except on a subset of examplesz with probability zero. Condition (2.7) then can be rewritten using (3.6) andexplicit integration operators.Z H(z; w) dP (z) = Z rwQ(z; w) dP (z) ?= rw Z Q(z; w) dP (z) (3.7)The Lebesgue integration theory provides a su�cient condition for swappingthe integration (R ) and di�erentiation (rw) operators. For each parametervalue w reached by the online algorithm, it is su�cient to �nd an integrablefunction �(z; w) and a neighborhood #(w) of w such that:8z; 8 v2 #(w); jQ(z; v)�Q(z; w)j � jw � vj�(z; w) (3.8)This condition (3.8) tests that the maximal slope of the loss function Q(z; w)is conveniently bounded. This is obviously true when the loss function Q(z; w)is di�erentiable and has an integrable gradient. This is obviously false whenthe loss function is not continuous. Given our previous assumption concern-ing the zero probability of the non di�erentiable points, condition (3.8) is asu�cient condition for safely ignoring a few non di�erentiable points.3.2.1 Rosenblatt's PerceptronDuring the early days of the computer age, the perceptron (Rosenblatt, 1957)generated considerable interest as a possible architecture for general pur-pose computers. This interest faded after the disclosure of its computational



Online Learning and Stochastic Approximations 11limitations (Minsky and Papert, 1969). Figure 4 represents the perceptronarchitecture. An associative area produces a feature vector x by applyingprede�ned transformations to the retina input. The feature vector is thenprocessed by a threshold element (section 3.1.1).The perceptron learning algorithm adapts the parameters w of the thresh-old element. Whenever a misclassi�cation occurs, the parameters are updatedaccording to the perceptron rule.wt+1 = wt + 2tytw0txt (3.9)This learning rule can be derived as an online gradient descent applied to thefollowing loss function:Qperceptron(z; w) = (sign(w0x)� y)w0x (3.10)Although this loss function is non di�erentiable when w0x is null, is meetscondition (3.8) as soon as the expectation E(x) is de�ned. We can thereforeignore the non di�erentiability and apply the online gradient descent algo-rithm: wt+1 = wt � t(sign(w0txt)� yt) xt (3.11)Since the desired class is either +1 or �1, the weights are not modi�ed whenthe pattern x is correctly classi�ed. Therefore this parameter update (3.11)is equivalent to the perceptron rule (3.9).The perceptron loss function (3.10) is zero when the pattern x is correctlyrecognized as a member of class y = �1. Otherwise its value is positive andproportional to the dot product w0x. The corresponding cost function reachesits minimal value zero when all examples are properly recognized or when theweight vector w is null. If the training set is linearly separable (i.e. a thresholdelement can achieve zero misclassi�cation) the perceptron algorithm �nds alinear separation with probability one. Otherwise, the weights wt quickly tendtowards zero.3.2.2 K-MeansThe K-Means algorithm (MacQueen, 1967) is a popular clustering methodwhich dispatches K centroids w(k) in order to �nd clusters in a set of pointsx1; : : : ; xL. This algorithm can be derived by performing the online gradientdescent with the following loss function.Qkmeans(x; w) 4= Kmink=1 (x� w(k))2 (3.12)This loss function measures the quanti�cation error, that is to say the erroron the position of point x when we replace it by the closest centroid. Thecorresponding cost function measures the average quanti�cation error.
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Figure 5: K-Means dispatches a prede�ned number of clustercentroids in a way that minimizes the quanti�cation error.This loss function is not di�erentiable on points located on the Vorono��boundaries of the set of centroids, but meets condition (3.8) as soon as theexpectations E(x) and E(x2) are de�ned. On the remaining points, the deriva-tive of the loss is the derivative of the distance to the nearest centroid w�.We can therefore ignore the non-di�erentiable points and apply the onlinegradient descent algorithm.w�t+1 = w�t + t(xt � w�t ) (3.13)This formula describes an elementary iteration of the K-Means algorithm. Avery e�cient choice of learning rates t will be suggested in section 3.3.2.3.2.3 Learning Vector Quantization IIKohonen's LVQ2 rule (Kohonen, Barna and Chrisley, 1988) is a powerfulpattern recognition algorithm. Like K-Means, it uses a �xed set of referencepoints w(k). A class y(k) is associated with each reference point. An unknownpattern x is then recognized as a member of the class associated with thenearest reference point.Given a training pattern x, let us denote w� the nearest reference pointand denote w+ the nearest reference point among those associated with thecorrect class y. Adaptation only occurs when the closest reference point w�is associated with an incorrect class while the closest correct reference pointw+ is not too far away:if ( x is misclassi�ed (w� 6= w+)and (x� w+)2 < (1 + �)(x� w�)2then ( w�t+1 = w�t � "t(x� w�t )w+t+1 = w+t + "t(x� w+t ) (3.14)
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Class 2 reference pointsFigure 6: Kohonen's LVQ2 pattern recognition scheme outputsthe class associated with the closest reference point to the inputpattern.Reference points are only updated when the pattern x is misclassi�ed. Fur-thermore, the distance to the closest correct reference point w+ must notexceed the distance to the closest (incorrect) reference point w� by morethan a percentage de�ned by parameter �. When both conditions are met,the algorithm pushes the closest (incorrect) reference point w� away fromthe pattern x, and pulls the closest correct reference point w+ towards thepattern x.This intuitive algorithm can be derived by performing an online gradientdescent with the following loss function:Qlvq2(z; w) 4= 8>><>>: 0 if x is well classi�ed (w+ = w�)1 if (x� w+)2 � (1 + �)(x � w�)2(x�w+)2�(x�w�)2�(x�w�)2 otherwise (3.15)This function is a continuous approximation to a binary variable indicatingwhether pattern x is misclassi�ed. The corresponding cost function thereforeis a continuous approximation of the system misclassi�cation rate (Bottou,1991). This analysis helps understanding how the LVQ2 algorithm works.Although the above loss function is not di�erentiable for some values ofw, it meets condition (3.8) as soon as the expectations E(x) and E(x2) arede�ned. We can therefore ignore the non-di�erentiable points and apply theonline gradient descent algorithm:if ( x is misclassi�ed (w� 6= w+)and (x� w+)2 < (1 + �)(x� w�)2then ( w�t+1 = w�t � tk1(x� w�t )w+t+1 = w+t + tk2(x� w+t ) (3.16)with k1 = 1�(X � w�)2 and k2 = k1 (X � w+)2(X � w�)2 (3.17)



14 L�eon BottouThis online gradient descent algorithm (3.16) is equivalent to the usual LVQ2learning algorithm (3.14). The two scalar coe�cients k1 and k2 merely modifythe proper schedule for the decreasing learning rates t.3.3 Quasi-Newton Online AlgorithmsBoth theoretical and empirical evidences demonstrate that batch gradientdescent algorithms converge much faster when the scalar learning rates t arereplaced by de�nite positive symmetric matrices that approximate the inverseof the Hessian of the cost function. The so-called super-linear algorithmsachieve very high terminal convergence speed: the number of correct �guresin the numerical representation of the solution increases exponentially (Dennisand Schnabel, 1983).The same techniques are also e�ective for speeding up online gradient algo-rithms. The results however are much less impressive than those achieved withbatch algorithms. No online gradient descent algorithm can achieve super-linear convergence (cf. comments to section 4). The terminal convergence ofan online gradient algorithm is limited by the size of the learning rates. Aswill be shown in sections 4 and 5, decreasing the learning rates too quicklycan prevent convergence.The accuracy of a super-linear algorithm however is largely irrelevant toa learning system. Severe approximations, such as using a �nite training set,would spoil the bene�ts of such an algorithm. Practitioners prefer techniquesblessed with robust convergence properties, such as the Levenberg-Marquardtalgorithm (Dennis and Schnabel, 1983). Furthermore, storing and processinga full learning rate matrix quickly becomes expensive when the dimensionof the parameter vector w increases. Less e�cient approximations have beendesigned (Becker and LeCun, 1989) and have proven e�ective enough for largesize applications (LeCun et al., 1989).3.3.1 Kalman AlgorithmsThe Kalman �lter theory has introduced an e�cient way to compute anapproximation of the inverse of the Hessian of certain cost functions. Thisidea is easily demonstrated in the case of linear algorithms such as the adaline(section 3.1.1). Consider online gradient descent applied to the minimizationof the following mean square cost function:C(w) = Z Q(z; w) dP (z) with Q(z; w) 4= (y � w0x)2 (3.18)Each iteration of this algorithm consists of drawing a new pair zt = (xt; yt)from the distribution dP (z) and applying the following update formula:wt+1 = wt �H�1t rwQ(zt; wt) = wt �H�1t (yt � w0txt)0xt (3.19)



Online Learning and Stochastic Approximations 15where Ht denotes the Hessian of the online empirical cost function. The onlineempirical cost function is simply an empirical estimate of the cost functionC(w) based on the examples z1; : : : ; zt observed so far.Ct(w) 4= 12 tXi=1Q(zi; w) = 12 tXi=1(yi � w0xi)2 (3.20)Ht 4= r2wCt(w) = tXi=1 xix0i (3.21)Directly computing the matrixH�1t at each iteration would be very expensive.We can take advantage however of the recursion Ht = Ht�1 + xtx0t using thewell known matrix equality:(A +BB0)�1 = A�1 � (A�1B) (I +B0A�1B)�1 (A�1B)0 (3.22)Algorithm (3.19) then can be rewritten recursively using the Kalman matrixKt = H�1t�1. The resulting algorithm (3.23) converges much faster than thedelta rule (3.2) and yet remains quite easy to implement:2664 Kt+1 = Kt � (Ktxt)(Ktxt)01 + x0tKtxtwt+1 = wt �Kt+1 (yt � w0txt)0xt (3.23)CommentsThis linear algorithm has an interesting optimality property (Tsypkin, 1973).Because the cost function (3.20) is exactly quadratic, it is easy to prove byinduction that (3.23) minimizes the online empirical cost Ct(w) at each iteration.Assuming that wt is the minimum of Ct�1(w), the following derivation showsthat wt+1 is the minimum of Ct(w).rwCt(wt+1) = rwCt(wt)�Ht (wt+1 � wt)= rwCt�1(wt) +rwQ(zt; wt)�HtH�1t rwQ(zt; wt)= 0Although this property illustrates the rapid convergence of algorithm (3.23), itonly describes how the algorithm tracks an empirical approximation (3.20) ofthe cost function. This approximation may not provide very good generalizationproperties (Vapnik, 1995).Non linear least mean square algorithms, such as the multi-layer networks(section 3.1.2) can also bene�t from non-scalar learning rates. The idea consistsof using an approximation of the Hessian matrix. The second derivatives of theloss function (3.5) can be written as:12r2w (y � f(x;w))2 = rwf(x;w)r0wf(x;w) � (y � f(x;w))r2wf(x;w)� rwf(x;w)r0wf(x;w) (3.24)



16 L�eon BottouApproximation (3.24), known as the Gauss Newton approximation, neglects theimpact of the non linear function f on the curvature of the cost function. Withthis approximation, the Hessian of the empirical online cost takes a very simpleform. Ht(w) � tXi=1 rwf(xi; w)r0wf(xi; w) (3.25)Although the real Hessian can be negative, this approximated Hessian is alwayspositive, a useful property for convergence. Its expression (3.25) is reminiscentof the linear case (3.21). Its inverse can be computed using similar recursiveequations.3.3.2 Optimal Learning Rate for K-MeansSecond derivative information can also be used to determine very e�cientlearning rates for the K-Means algorithm (section 3.2.2). A simple analysisof the loss function (3.12) shows that the Hessian of the cost function is adiagonal matrix (Bottou and Bengio, 1995) whose coe�cients �(k) are equalto the probabilities that an example x is associated with the correspondingcentroid w(k).These probabilities can be estimated by simply counting how many ex-amples n(k) have been associated with each centroid w(k). Each iteration ofthe corresponding online algorithm consists in drawing a random examplext, �nding the closest centroid w(k), and updating both the count and thecentroid with the following equations:" nt+1(k) = nt(k) + 1wt+1(k) = wt(k) + 1nt+1(k)(xt � wt(k)) (3.26)Algorithm (3.26) very quickly locates the relative position of clusters in thedata. Terminal convergence however is slowed down by the noise impliedby the random choice of the examples. Experimental evidence (Bottou andBengio, 1995) suggest that the best convergence speed is obtained by �rstusing the online algorithm (3.26) and then switching to a batch super-linearversion of K-means.4 Convex Online OptimizationThe next two sections illustrate how nicely the convergence of online learn-ing algorithm is analyzed by the modern mathematical tools designed forstochastic approximations. This particular section addresses a simple convexcase, while focusing on the mathematical tools and on their relation withthe classical analysis of batch algorithms. This presentation owes much to aremarkable lecture by Michel Metivier (Metivier, 1981).



Online Learning and Stochastic Approximations 174.1 General ConvexityThe analysis presented in this section addresses the convergence of the gen-eral online gradient algorithm (section 2.3) applied to the optimization of adi�erentiable cost function C(w) with the following properties:� The cost function C(w) has a single minimum w�.� The cost function C(w) satis�es the following condition:8" > 0; inf(w�w�)2>" (w � w�)rwC(w) > 0 (4.1)Condition (4.1) simply states that the opposite of the gradient �rwC(w) al-ways points towards the minimum w�. This particular formulation also rejectscost functions which have plateaus on which the gradient vanishes withoutmaking us closer to the minimum.This condition is weaker than the usual notion of convexity. It is indeedeasy to think of a non convex cost function which has a single minimum andsatis�es condition (4.1). On the other hand, proving that all di�erentiablestrictly convex functions satisfy this condition is neither obvious nor useful.4.2 Batch Convergence RevisitedThe convergence proof for the general online learning algorithm follow ex-actly the same three steps than the convergence proofs for batch learningalgorithms. These steps consist of (a) de�ning a Lyapunov criterion of con-vergence, (b) proving that this criterion converges, and (c) proving that thisconvergence implies the convergence of the algorithm. These steps are nowillustrated in the cases of the continuous gradient descent and the batch gra-dient descent.4.2.1 Continuous Gradient DescentThe continuous gradient descent is a mathematical description of the idealconvergence of a gradient descent algorithm. A di�erential equation de�nesthe parameter trajectory w(t) as a continuous function of the time.dwdt = �rwC(w) (4.2)Step a. The convergence proof begins with the de�nition of a Lyapunovfunction, i.e. a positive function which indicates how far we are from thetarget. h(t) 4= (w(t)� w�)2 (4.3)



18 L�eon BottouStep b. Computing the derivative of h(t) shows that the Lyapunov functionh(t) is a monotonically decreasing function.dhdt = 2(w � w�)dwdt = �2(w � w�)rwC(w) � 0 (4.4)Since h(t) is a positive decreasing function, it has a limit when t!1.Step c. Since the monotonic function h(t) converges when t grows, its gra-dient tends towards zero.dhdt = �2(w � w�)rwC(w) �!t!1 0 (4.5)Let us assume that the Lyapunov function h(t) converges to a value greaterthan zero. After a certain time, the distance h(t) = (w(t)�w�)2 would remaingreater than some positive value ". This result is incompatible with condition(4.1) and result (4.5). The Lyapunov function h(t) therefore converges to zero.This result proves the convergence of the continuous gradient descent (4.2).w(t) �!t!1w� (4.6)4.2.2 Discrete Gradient DescentThe batch gradient descent algorithm has been introduced in section 2.2.1 inthe context of learning algorithms. The cost function C(w) is minimized byiteratively applying the following parameter update:wt+1 = wt � trwC(w) (4.7)Equation (4.7) is a discrete version of the continuous gradient descent (4.2).Although the discrete dynamics brings new convergence issues, the analysisof the convergence follows the same three elementary steps.Step a. The convergence proof begins with the de�nition of a Lyapunovsequence, i.e. a sequence of positive numbers whose value measure how far weare from our target. ht 4= (wt � w�)2 (4.8)Lemma. It is useful at this point to introduce a su�cient criterion for theconvergence of a positive sequence (ut). Intuitively, a sequence (ut) convergeswhen it is bounded and when its oscillations are damped. The oscillationscan be monitored by summing the variations ut � ut�1 whenever ut > ut�1.These positive variations are represented with thick lines in �gure 7. Whenthe in�nite sum of the positive variations converges, we are certain that theoscillations are damped. If all terms of the sequence are positive, this conditionalso ensures that the sequence if bounded.
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Figure 7: The convergence of the in�nite sum of the positiveincreases (thick lines) is a su�cient (although not necessary) con-dition for the convergence of a positive sequence ht. This conditionensures (i) that the sequence is bounded, and (ii) that the oscil-lations are damped.This intuition is easily formalized by decomposing a term ut of a sequenceusing the sum S+t of the positive variations:S+t 4= t�1Xi=1(ui+1 � ui)+ with (x)+ 4= ( x if x > 00 otherwise (4.9)and the sum S�t of the negative variations:S�t 4= t�1Xi=1(ui+1 � ui)� with (x)� 4= ( 0 if x > 0x otherwise (4.10)If the sum of the positive variations converges to S+1, this decompositionprovides an upper bound for the positive sequence ut.0 � ut = u1 + S+t + S�t � u1 + S+1 + S�t < u0 + S+1 (4.11)Furthermore, since ut � 0, the same decompositions also provides a lowerbound for the sum of the negative variations S�t .0� u1 � S+1 � S�t � 0 (4.12)Since S�t is a bounded monotonically decreasing sequence, it converges to alimit S�1. Since both sequences S+t and S�t converge, the sequence ut convergesto u1 = u1 + S+1 + S�1.8t; ut � 01Xt=1(ut+1 � ut)+ <1 9>=>; =) ut �!t!1 u1 � 0 (4.13)



20 L�eon BottouThe convergence of the in�nite sum of the positive variations is therefore asu�cient condition for the convergence of the sequence. Since the positivevariations are positive, it is su�cient to prove that they are bounded by thesummand of a convergent in�nite sum.Step b. The second step consists in proving that the Lyapunov sequence(ht) converges. Using the the de�nition (4.8) and from the gradient descentalgorithm (4.7), we can write an expression for the variations of the Lyapunovcriterion.ht+1 � ht = �2t (wt � w�)rwC(wt) + 2t (rwC(wt))2 (4.14)The convexity criterion (4.1) ensures that the �rst term of this expressionis always negative. Unlike the continuous variations (4.4), this expressioncontains a positive second term which reects the discrete dynamics of thealgorithm.Additional conditions must be introduced in order to contain the e�ectsof this second term. The �rst condition (4.15) states that the learning ratest decrease fast enough. This is expressed by the convergence of the in�nitesum of the squared learning rates.1Xi=1 2t <1 (4.15)The second condition (4.16) ensures that the size of gradients do not growtoo fast when we move away from the minimum. This linear condition is metas soon as the eigenvalues of the Hessian matrix are bounded.(rwC(w))2 � A+B(w � w�)2 A;B � 0 (4.16)Such a condition is required because the polynomial decrease of the learningrates would be too easily canceled by exponentially growing gradients. We cannow transform equation (4.14) using the bound on the size of the gradients(4.16).ht+1 � (1� 2tB)ht � �2t (wt � w�)rwC(wt) + 2tA � 2tA (4.17)We now de�ne two auxiliary sequences �t and h0t:�t 4= tYi=1 11� 2iB �!t!1�1 and h0t 4= �tht (4.18)The convergence of �t is easily veri�ed by writing log�t and using condition(4.15). Multiplying both the left-hand-side and the right hand side of (4.17)by �t, we obtain: (h0t+1 � h0t) � 2t �tA (4.19)



Online Learning and Stochastic Approximations 21Since the right hand side of (4.19) is positive, the positive variations of h0t areat most equal to 2t �tA, which is the summand of a convergent in�nite sum.According to lemma (4.13), the sequence h0t converges. Since �t converges,this convergence implies the convergence of the Lyapunov sequence ht.Step c. We now prove that the convergence of the Lyapunov sequence impliesthe convergence of the discrete gradient descent algorithm. Since the sequenceht converges, equation (4.17) implies the convergence of the following sum:1Xi=1 i(wi � w�)rwC(wi) < 1 (4.20)We must introduce an additional condition on the learning rates i. Thiscondition limits the rate of decrease of the learning rates. Such a condition isrequired, because decreasing the learning rates too quickly could stop the pro-gression of the algorithm towards the minimum. This condition is expressedby the divergence of the in�nite sum of the learning rates:1Xi=1 i = 1 (4.21)Condition (4.21) is intuitively natural if we imagine that the current param-eter is far away from the minimum in an area where the gradient is approx-imately constant. Successive updates trwC(wt) should be allowed to movethe parameter to arbitrary distances.Since we are dealing with positive quantities only, conditions (4.20) and(4.21) imply that: (wt � w�)rwC(wt) �!t!1 0 (4.22)This result is similar to (4.5) and leads to the same conclusion about theconvergence of the gradient descent algorithm.wt �!t!1w� (4.23)Besides the existence of a single minimum w� and the general convexity cri-terion (4.1), we had to introduce three additional conditions to obtain thisconvergence. Two conditions (4.15) and (4.21) directly address the learningrate schedule. The last condition (4.16) states that the growth of the gradientsis limited.CommentsCondition (4.16) states that the gradient should not increase more than linearlywhen we move away from the minimum. Bounding the eigenvalues of the Hessianis an easy way to make sure that this condition holds. More general theorems



22 L�eon Bottouhowever only require a polynomial bound on the size of the gradient (Benveniste,Metivier and Priouret, 1990).The proof presented in this section addresses the case of decreasing learningrates. A di�erent approach to step (b) leads to convergence results for the caseof constant learning rates. Instead of bounding the second term of the variations(4.14) we can compare the sizes of both terms. Assuming condition (4.16) withA = 0, it appears that choosing a constant learning rate smaller than p2=Bmakes the variations (4.14) negative. This result is consistent with the usualcriterion since the minimal value of B is the square of the highest eigenvalue ofthe Hessian matrix.This analysis also provides convergence speed results: bounding the righthand side of (4.14) gives a measure of how quickly the Lyapunov sequencedecreases. As expected, the best bounds are obtained when (wt � w�) andtrwC(wt) are aligned. This can be achieved by choosing a learning rate matrixt which approximates the inverse of the Hessian. Such a non scalar learningrates only introduces minor changes in the proofs. The learning rate matrix mustbe symmetric and de�nite positive. Conditions (4.15) and (4.21) then must referto the highest and lowest eigenvalues of the learning rate matrix.4.3 Lyapunov ProcessConvergence proofs for the general online gradient algorithm (section 2.3) canbe established using the same approach. It is obvious however that any onlinelearning algorithm can be mislead by a consistent choice of very improbableexamples. There is therefore no hope to prove that this algorithm alwaysconverges. The best possible result then is the almost sure convergence, thatis to say that the algorithm converges towards the solution with probability1. Each iteration of the general gradient descent algorithm consists of drawingan event zt from distribution dP (z) and applying the update formulawt+1 = wt � tH(zt; wt) (4.24)where the update term H(zt; wt) ful�lls the conditionEzH(z; wt) = rwC(wt) (4.25)and where the learning rates t are positive numbers or de�nite positive ma-trices. The main discussion in this section addresses scalar learning rates.Using a learning rate matrix introduces only minor changes discussed in thecomments.Step a. The �rst step in the proof consists in de�ning a Lyapunov processwhich measures how far we are from the solution.ht 4= (wt � w�)2: (4.26)



Online Learning and Stochastic Approximations 23Although de�nition (4.26) looks similar to the discrete batch gradient case(4.8), the notation ht in (4.26) denotes a random variable that depends onall the previous choices of example events zt.Step b. As in the batch gradient case, an expression for the variations of htcan be derived using equations (4.24) and (4.26).ht+1 � ht = �2t(wt � w�)H(zt; wt) + 2t (H(zt; wt))2 (4.27)The convergence proof for the discrete gradient descent (section 4.2.2) relieson lemma (4.13) to establish the convergence of the Lyapunov criterion. Thelemma de�nes a su�cient condition based on the variations of the criterion.Expression (4.27) however explicitly refers to the random example zt. Usinglemma (4.13) here would be an attempt to prove that the algorithm convergesfor all imaginable choice of the examples, including the most improbable, suchas continuously drawing the same example.The correct approach consists in removing this dependency by taking theconditional expectation of the variations (4.27) given all the information Ptthat was available just before iteration t.Pt 4= zo; : : : ; zt�1; w0; : : : ; wt; 0; : : : ; t (4.28)This conditional expectation of the variations gives su�cient information toapply the quasi-martingale convergence theorem.4.4 Quasi-MartingalesThe quasi-martingale convergence theorem is in fact very similar to the lemma(4.13) presented in section 4.2.2. The following discussion only presents thetheorem without proof and exposes its analogy with this lemma. Proofs canbe found in (Metivier, 1983) or (Fisk, 1965).Given all the past information Pt, we wish to de�ne a deterministic crite-rion for distinguishing the \positive variations" from the \negative variation-s" of a process ut. The sign of the variation ut+1 � ut is not an acceptablechoice because it depends on ut+1 which is not fully determined given Pt.This problem can be solved by considering the conditional expectation of thevariations. �t 4= ( 1 if E (ut+1 � ut j Pt) > 00 otherwise (4.29)The variable � de�ned in (4.29) de�nes which variations are considered posi-tive. The convergence of the in�nite sum of the positive expected variationsis a su�cient condition for the almost sure convergence of a positive processut. 8t; ut � 01Xt=1E(�t(ut+1 � ut)) <1 9>=>; =) ut a:s:�!t!1 u1 � 0 (4.30)



24 L�eon BottouThis result is a particular case of theorem 9.4 and proposition 9.5 in (Metivier,1983). The name quasi-martingale convergence theorem comes from the factthat condition (4.30) also implies that the process ut is a quasi-martingale(Fisk, 1965). Comparing theorem (4.30) and lemma (4.13) explains easilywhy quasi-martingales are so useful for studying the convergence of onlinealgorithms. This fact has been known since (Gladyshev, 1965).4.5 Convergence of Online Algorithms (Convex Case)This convergence result allow us to proceed with step (b) of our proof.Step b (continued). The following expression is obtained by taking theconditional expectation of (4.27) and factoring the constant multipliers.E (ht+1 � ht j Pt) = � 2 t(wt � w�)E (H(zt; wt) j Pt)+ 2t E �H(zt; wt)2 j Pt� (4.31)This expression can be further simpli�ed using condition (4.25).E (ht+1 � ht j Pt)= � 2 t(wt � w�)Ez(H(z; wt)) + 2t Ez(H(zt; wt)2)= � 2 t(wt � w�)rwC(wt) + 2t Ez(H(zt; wt)2) (4.32)The �rst term of this upper bound is negative according to condition 4.1. Asin section 4.2.2, two additional conditions are required to address the discretedynamics of the algorithm. The �rst condition (4.33), similar to (4.15), statesthat the learning rates are decreasing fast enough.1Xi=1 2t <1 (4.33)The second condition (4.34) serves the same purpose than condition (4.16).This term bounds the growth of the second moment of the update H(z; w).Ez(H(z; w)2) � A +B(w � w�)2 A;B � 0 (4.34)We can now transform equation (4.32) using this condition.E �ht+1 � (1� 2tB)ht j Pt� � �2t (wt � w�)rwC(wt) + 2tA (4.35)We now de�ne two auxiliary sequences �t and h0t as in (4.18). Multiplyingboth the left-hand-side and the right hand side of (4.32) by �t, we obtain:E �h0t+1 � h0t j Pt� � 2t �tA (4.36)



Online Learning and Stochastic Approximations 25A simple transformation then gives a bound for the positive expected varia-tions of h0t.E(�t (h0t+1 � h0t)) = E(�t E �h0t+1 � h0t j Pt� ) � 2t �tA (4.37)Since this bound is the summand of a convergent in�nite sum, theorem (4.30)implies that h0t converges almost surely. Since the sequence �t converges, theLyapunov process ht also converges almost surely.Step c. We now prove that the convergence of the Lyapunov process impliesthe convergence of the discrete gradient descent algorithm. Since ht converges,equation (4.35) implies the convergence of the following sum:1Xi=1 i(wi � w�)rwC(wi) < 1 a.s. (4.38)We must introduce an additional condition on the learning rates i whichlimits the rate of decrease of the learning rates. This condition is similar tocondition (4.21). 1Xi=1 i = 1 (4.39)Since we are dealing with positive quantities only, conditions (4.38) and (4.39)imply that: (wt � w�)rwC(wt) a:s:�!t!1 0 (4.40)This result is similar to (4.5) or (4.22) and leads to the same conclusion aboutthe convergence of the gradient descent algorithm.wt a:s:�!t!1w� (4.41)Besides the general convexity criterion (4.1), we had to introduce three addi-tional conditions to obtain this convergence. Two conditions (4.33) and (4.39)directly address the learning rate schedule as in the batch gradient case. Thelast condition (4.34) is similar to condition (4.16) but contains an additionalvariance term which reects the stochastic dynamics of the online gradientdescent.CommentsEquations (4.14) and (4.32) look very similar. The second term of the right handside of (4.32) however refers to the second moment of the updates instead of thenorm of the gradients. This term can be decomposed as follows:2tEz(H(z; w))2 = 2t (rwC(w))2 + 2t varzH(z; w) (4.42)The second term of this decomposition depends on the noise implied by thestochastic nature of the algorithm. This variance remains strictly positive in



26 L�eon Bottougeneral, even at the solution w�. This fact is the main explanation for the dy-namical di�erences between batch gradient descent and online gradient descent.Let us assume that the algorithm converges. The �rst term of the right handside of (4.32) tends towards zero, as well as the �rst term of (4.42). We cantherefore write an asymptotic equivalent to the expected variation the Lyapunovcriterion:E (ht+1 � ht j Pt) �t!1 t ( tvarzH(z; w�)� (wt � w)rwC(w) ) (4.43)This result means that the quantities tvarzH(z; w�) and (wt � w)rwC(w) keepthe same order of magnitude during the convergence. Since the latter quantityis related to the distance to the optimum (cf. comments to section 4.2.2) theconvergence speed depends on how fast the learning rates t decrease. Thisdecrease rate is in turn limited by condition (4.39).This analysis can be repeated with non scalar learning rates approximatingthe inverse of the Hessian. This algorithm converges faster than using a scalarlearning rate equal to the inverse of the largest eigenvalue of the Hessian. Thisresult of course assume that these learning rates still ful�ll criterions (4.33) and(4.39), as in the batch gradient descent case (cf. comments to section 4.2.2).The �nal comment expands section 3.2 discussing online gradient descentwith non di�erentiable functions. The proof presented in this section never usesthe fact that rwC(w) is actually the gradient of the cost C(w). All referencesto this gradient can be eliminated by merging conditions (4.1) and (4.25):8" > 0; inf(w�w�)2>" (w � w�) EzH(z; w) > 0 (4.44)This condition (4.44), together with the usual conditions (4.33), (4.39) and(4.34), is su�cient to ensure the convergence of algorithm (4.24). This resultmakes no reference to a di�erentiable cost function.5 General Online OptimizationThis section analyzes the convergence of the general online gradient algorithm(section 2.3) without convexity hypothesis. In other words, the cost functionC(w) can now have several local minima.There are two ways to handle this analysis. The �rst method consists ofpartitioning the parameter space into several attraction basins, discussing theconditions under which the algorithm con�nes the parameters wt in a singleattraction basin, de�ning suitable Lyapunov criterions (Krasovskii, 1963), andproceeding as in the convex case. Since the online gradient descent algorithmnever completely con�nes the parameter into a single attraction basin, wemust also study how the algorithm hops from one attraction basin to another.A much simpler method quickly gives a subtly di�erent result. Instead ofproving that the parameter wt converges, we prove the cost function C(wt)and its gradient rwC(wt) converge. The discussion presented below is anexpanded version of the proof given in (Bottou, 1991).



Online Learning and Stochastic Approximations 275.1 AssumptionsThe convergence results rely on the following assumptions:i) The cost function C(w) is three times di�erentiable with continuousderivatives. It is bounded from below, i.e. C(w) � Cmin. We can assume,without loss of generality, that C(w) � 0.ii) The usual conditions on the learning rates are ful�lled.1Xi=1 2t <1; 1Xi=1 t =1 (5.1)iii) The second moment of the update term should not grow more thanlinearly with the size of the parameters. This condition is similar to(4.34). Ez(H(z; w))2 � A+Bw2 (5.2)iv) When the norm of the parameter w is larger than a certain horizon D,the opposite of the gradient �rwC(w) points towards the origin.infw2>DwrwC(w) > 0 (5.3)v) When the norm of the parameter w is smaller than a second horizonE greater than D, the norm of the update term H(z; w) is boundedregardless of z. This is usually a mild requirement.8z; supw2<E jjH(z; w)jj � K0 (5.4)Hypothesis (5.3) prevents the possibility of plateaus on which the parametervector can grow inde�nitely without ever escaping. Beyond a certain horizon,the update terms always moves wt closer to the origin on average.This condition is easy to verify in the case of the K-Means algorithm (sec-tion 3.2.2) for instance. The cost function is never reduced by moving cen-troids beyond the envelope of the data points. Multi-layer networks (section3.1.2) however do not always ful�ll this condition because the sigmoid has atasymptotes. In practice however, it is common to choose desired values thatare smaller than the sigmoid asymptotes, and to add a small linear term tothe sigmoid which makes sure that rounding errors will not make the sigmoidgradient negative. These well known tricks in fact ensure that condition (5.3)is ful�lled. A similar discussion applies to the LVQ2 algorithm (section 3.2.3).



28 L�eon Bottou5.2 Global Con�nementThe �rst part of the analysis consists in taking advantage of hypothesis (5.3)and proving that the parameter vector wt is almost surely con�ned into abounded region. The proof again relies on the same three steps.Step a. We de�ne a suitable criterion:ft 4= max(E;w2t ) (5.5)Step b. The de�nition of ft implies that the variations of ft are bounded bythe variations of w2t .ft+1 � ft � �2twtH(zt; wt) + 2t (H(zt; wt))2 (5.6)Inequality (5.6) is actually an equality when both w2t+1 and w2t are greaterthan E. We can the write a bound for the expected variations:E (ft+1 � ft j Pt) � �2twtrwC(wt) + 2tEz(H(z; wt))2 (5.7)We can eliminate the �rst term of this bound by considering several cases:� When both w2t+1 and w2t are smaller than E, the variations ft+1 � ftare zero. The expected variations are therefore bounded by the secondterm of (5.7) which is positive.� When w2t is greater than E, hypothesis (5.3) ensures that the secondterm of the bound (5.7) is negative. We can safely remove this term.� The remaining case has w2t < E and w2t+1 � E. The di�erence betweenwt+1 and wt is tH(zt; wt). Since hypothesis (5.4) ensures that H(zt; wt)is bounded, we can conclude that wt is greater than D as soon as the de-creasing learning rates become small enough. Invoking hypothesis (5.3)gives the �nal argument.The following bound therefore is valid when t is large enough:E (ft+1 � ft j Pt) � 2tEz(H(z; wt))2 � 2t (A +Bft) (5.8)We now proceed along the well known lines. We �rst transform the boundon the expected variations as in (4.35). We de�ne two auxiliary quantities �tand f 0t as in (4.18). The expected variations of f 0t are bounded as shown inequation (4.36). We can then bound the positive expected variations of f 0t .E(�t(f 0t+1 � f 0t)) � E(�tE �f 0t+1 � f 0t j Pt�) � 2t �tA (5.9)



Online Learning and Stochastic Approximations 29Theorem (4.30) then implies that f 0t converges almost surely. This convergenceimplies that ft converges almost surely.Step c. Let us assume that ft converge to a value f1 greater than E.When t is large enough, this convergence implies that both w2t and w2t+1 aregreater than E. Bound (5.6) is then an equality. This equality implies thatthe following in�nite sum converges almost surely:1Xi=1 twtrwC(wt) <1 a.s. (5.10)Since P t =1 this result is not compatible with hypothesis (5.3). We musttherefore conclude that ft converges to the smallest possible value E.Global con�nement. The convergence of ft means that the norm w2t of theparameter vector wt is bounded. In other words, hypothesis (5.3) guaranteesthat the parameters will be con�ned in a bounded region containing the origin.This con�nement property means that all continuous functions of wt arebounded (we assume of course that the parameter space has �nite dimen-sion). This include w2t , Ez(H(z; w))2 and all the derivatives of the cost func-tion C(wt). In the rest of this section, positive constants K1, K2, etc. . . areintroduced whenever such a bound is used.5.3 Convergence of Online Algorithms (General Case)We now proceed with the analysis of the general online gradient algorithm.Step a. We de�ne the following criterion:ht 4= C(wt) � 0 (5.11)Step b. We can then bound the variations of the criterion ht using a �rstorder Taylor expansion and bounding the second derivatives with K1.j ht+1 � ht + 2tH(z; wt)rwC(wt) j � 2tH(z; wt)2K1 a.s. (5.12)This inequality can be rewritten as:ht+1 � ht � �2tH(z; wt)rwC(wt) + 2tH(z; wt)2K1 a.s. (5.13)We now take the conditional expectation using (2.7):E (ht+1 � ht j Pt) � �2t(rwC(wt))2 + 2tEz(H(z; wt))K1 (5.14)This result leads to the following bound:E (ht+1 � ht j Pt) � 2tK2K1 (5.15)



30 L�eon BottouThe positive expected variations of ht are then bounded byE(�t (ht+1 � ht)) = E(�t E (ht+1 � ht j Pt) ) � 2tK2K1 (5.16)Since this bound is the summand of a convergent in�nite sum, theorem (4.30)implies that ht = C(wt) converges almost surely.C(wt) a:s�!t!1C1 (5.17)Step c. The last step of the proof departs from the convex case. Provingthat C(wt) converges to zero would be a very strong result, equivalent toproving the convergence to the global minimum. We can however prove thatthe gradient rwC(wt) converges to zero almost surely.By taking the expectation of (5.14) and summing on t = 1 : : :1, we seethat the convergence of C(wt) implies the convergence of the following in�nitesum: 1Xt=1 t(rwC(wt))2 <1 a.s (5.18)This convergence does not imply yet that the squared gradient rwC(wt)converges. We now de�ne a second criterion:gt 4= (rwC(wt))2 (5.19)The variations of gt are easily bounded using the Taylor expansion proceduredemonstrated for the variations of ht.gt+1 � gt � �2tH(z; w)r2wC(wt)rwC(wt) + 2t (H(z; w)2K3 a.s. (5.20)Taking the conditional expectation and bounding the second derivatives byK4: E (gt+1 � gt j Pt) � 2t(rwC(wt))2K4 + 2tK2K3 (5.21)We can then bound the positive expected variations of gt:E(�t(gt+1 � gt)) = E(�tE (gt+1 � gt j Pt))� t(rwC(wt))2K4 + 2tK2K3 (5.22)The two terms on the right hand side are the summands of convergent in�nitesums (5.18) and (5.1). Theorem (4.30) then implies that gt converges almostsurely. Result (5.18) implies that this limit must be zero.gt a:s:�!t!1 0 and rwC(wt) a:s:�!t!1 0 (5.23)
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Figure 8: Extremal points include global and local minima. Theyalso include poor solutions like saddle points and asymptoticplateaus. Every user of multi-layer network training algorithmsis well aware of these possibilities.5.4 Convergence to the Extremal PointsLet us summarize the convergence results obtained for the general gradientdescent algorithm (section 2.3). These results are based on the �ve hypothesespresented in section 5.1.i) The parameter vectors wt are con�ned with probability 1 in a boundedregion of the parameter space. This result essentially is consequence ofhypothesis (5.3).ii) The cost function C(wt) converges almost surely.C(wt) a:s:�!t!1 C1iii) The gradient rwC(wt) converges almost surely to 0.rwC(wt) a:s:�!t!1 0The convergence of the gradient is the most informative result. Figure 8 showsseveral regions in which the gradient goes to zero. These regions include localminima, saddle points, local maxima and plateaus.The con�nement result prevents the parameter vector wt to diverge on anasymptotic plateau. Experience shows that hypothesis (5.3) is very signi�cant.It is well known indeed that such a divergence occurs easily when the desiredoutputs of a multi-layer network are equal to the asymptotes of the sigmoid.Saddle points and local maxima are usually unstable solutions. A smallisotropic noise in the algorithm convergence can move the parameter vec-tor away. We cannot however discard these solutions because it is easy toconstruct cases where the stochastic noise introduced by the online gradientdescent procedure is not su�cient because it is not isotropic.This convergence to the extremal points concludes our discussion.
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