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           Math Background 

Pattern Classification and  
Pattern verification 

·  Many applications fall into the categories: pattern classification 
or pattern verification. 

·  Pattern classification: based on some observed information of an 
input, classify it into one of the finite number of classes.  

–  Speech recognition 
–  Speaker identification (recognition) 
–  Text categorization 
–  Language understanding 
–  etc. 

·  Pattern Verification: 
–  Speaker verification 
–  Audio/video segmentation 
–  etc. 
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Major Paradigm Shift: 
Rule/Knowledge-Based  Data-Driven 

 ·  Rule/Knowledge-based method: 
–  Experts analyze some samples to gain knowledge. 
–  Knowledge representation: rule-based. 
–  Inference based on rules: parsing, etc. 

·  Data-driven statistical approach: 
–  Collect a mass amount of representative data. 
–  Manually select a statistical model for the underlying data. 
–  Model estimation from the data set automatically. 
–  Make decision based on the estimated models. 

·  Recently, data-driven statistical approach has achieved great 
successes in many many real-world applications: 

–  Automatic speech recognition (ASR) 
–  Statistical machine translation 
–  Computational linguistics 

Probability & Statistics: review 

·  Probability 
·  Random variables/vectors: discrete vs. continuous 
·  Probability distribution of random variables: pmf, pdf, cdf 
·  Mean, variance, moments 
·  Conditional probability & Bayes’ theorem: independence 
·  Joint Probability distribution: marginal distribution 
·  Some useful distributions: 

–  Multinomial, Gaussian, Uniform, Dirichlet, Gamma, etc. 
·  Information Theory: entropy, mutual information, information 

channel, KL divergence, etc. 
·  CART (Classification and Regression Tree) 
·  Function Optimization 
·  Linear Algebra: matrix manipulation 
·  Others  
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Probability Definition 
·  Sample Space:  

–  collection of all possible observed outcomes  
·  An Event  A:                 including null event   
·     -field: set of all possible events 
·  Probability Function (Measurable)  

–  Meet three axioms: 
1.    
2.  If                then  
3.  If                      then 
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Some Examples 
·  Example I: experiment to toss a 6-face dice once: 

–  Sample space:  {1,2,3,4,5,6} 
–  Events: X={even number}, Y={odd number}, Z={larger than 3}. 
–     -field: set of all possible events 
–  Probability Function (Measurable)  relative frequency 

·  Example II:  
–  Sample Space:  
            = {x: x is the height of a person on earth} 
–  Events:  

•  A={x: x>200cm} 
•  B={x: 120cm<x<130cm} 

–  -field: set of all possible events 
–  Probability Function (Measurable)  
–  measuring A, B: 
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Conditional Events 
·  Prior Probability 

–  probability of an event before considering any additional 
knowledge or observing any other events (or samples): P(A) 

·  Joint probability of multiple events: probability of several events 
occurring concurrently, e.g.,                     . 

·  Conditional Probability: probability of one event (A) after another 
event (B) has occurred, e.g., P(A|B). 

–  updated probability of an event given some knowledge about 
another event. Definition is: 

·  Prove the Addition Rule: 

·  From Multiplication Rule, show Chain Rule: 
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Bayes’ Theorem 
·  Swapping dependency between events 

–  calculate P(B|A) in terms of P(A|B) that is available and more relevant in 
some cases 

·  In some cases, not important to compute P(A) 

·  Another Form of Bayes’ Theorem  
–  If a set B partitions A, i.e.  
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Random Variable 
·  A random variable (R.V.) is a variable which could take various 

values with different probabilities.  
·  A R.V. is said to be discrete if its set of possible values is a discrete 

set. The probability mass function (p.m.f.) is defined: 

·  A univariate discrete R.V., one p.m.f. example: 

·  A R.V. is said to be continuous if its set of possible values is an 
entire interval of numbers. Each continuous R.V. has a distribution 
function: for a R.V. X, its cumulative distribution function (c.d.f.) is 
defined as:  

·  A probability density function (p.d.f.) of a continuous R.V. is a 
function that for any two number a, b (a<b), 
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Random Variable 

·  Expectation of random variables and its functions 

·  Mean and Variance 

·  r-th moment (r=1,2,3,4,…) 

·  Random vector is a vector whose elements are all random 
variables. 
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Joint and Marginal Distribution 
·  Joint Event and Product Space of two (or more) R.V.’s 

–  e.g. E=(A,B)=(200cm<height, live in Canada) 
·  Joint p.m.f of two discrete random variables X, Y: 

·  Joint p.d.f. (c.d.f.) of two continuous random variables X, Y: 

·  Marginal p.m.f. and p.d.f.: 

dc Ω×Ω

 X       \    Y 0 1 2 
T 0.03 0.24 0.17 

F 0.23 0.11 0.22 

p(x, y) = Pr(X ≤ x,Y ≤ y)

Pr(a ≤ x ≤ b,c ≤ y ≤ d) = f (x, y)dydx
c
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Conditional Distribution of RVs 
•  Conditional p.m.f. or p.d.f. for discrete or continuous R.V.’s  

·  Conditional Expectation 

·  Conditional Mean: 

·  Independence: 

·  Covariance between two R.V.’s 

·  Uncorrelated R.V.’s: 

f (x | y) = f (x, y) / f (y)
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Some Useful Distributions (I) 
·  Binomial Distribution: B(R=r; n, p) 

–  probability of r successes in n trials with a success rate p 

–  For binomial distribution: 

·  Multinomial Distribution 

–  For multinomial distribution 
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Plot of Probability Mass Function 
·  Binomial distribution: n=3, p=0.7 

P(R=r) 
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Some Useful Distributions (II) 
·  Poisson Distribution with mean (and var) as 

·  Beta distribution with parameters 

–  For Beta distribution:   
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Some Useful Distributions (III) 
·  Dirichlet distribution: a random vector (X1,…,Xk) has a Dirichlet 

distribution with parameter vector (α1,…, αk) (for all αk>0) if 

–  For Dirichlet distribution:  
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Some Useful Distributions (IV) 
·  Uniform Distribution: U(X=x; a, b) 

·  Normal (or Gaussian) Distribution: Bell Curve 

·  Show 
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Some Useful Distributions (V) 
·  Gamma Distribution: a random variable X has a gamma 

distribution with parameters α and β (α>0, β>0) if  
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⎪
⎪
⎩

⎪⎪
⎨

⎧
>⋅

Γ=

−−

otherwise             0

0for 
)(),|(

1 xex
xp

xβα
α

α
β

βα

2

0

1

)(Var)(E

function) (gammad)(

β
α

β
α

α α

==

=Γ ∫
∞ −−

XX

ueu u

Some Useful Distributions (VI) 
·  2-D Uniform Distribution:  

·  Multivariate Normal Distribution 

·  Show 

·  Can you write down the 2-D distribution form, compute 
Cov(X,Y), and derive the marginal and conditional densities, 
f(y) and f(x|y) ? 
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Gaussian Mixture Distribution 
·  Gaussian Mixture distribution: 

·  In theory, MG(x) matches any probabilistic density up to second 
order statistics (mean and variance) 

·  Approximating multi-modal densities which is more likely to 
describe real-world data. 

x 

Distribution of speech 
features (MFCC) over 

a large population 
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Multinomial Mixture Models 
·  The idea of mixture applies to other distributions. 
·  Multinomial Mixture model (MMM): 

–  Useful for modeling complex discrete data, such 
as text, biological sequences, etc… 
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Parametric Distributions 
·  Parametric Distribution 

–  r.v. described by a small number of parameters in pdf/pmf 
–  e.g. Gaussian (2), Binomial (2), 2-d uniform (4) 
–  many useful and known parametric distributions 
–  Probability distribution of independently and identically distributed 

(i.i.d.) samples from such distributions can be easily derived. 
·  Non-Parametric Distribution 

–  usually described by the data samples themselves 
–  Sample distribution & histogram (pmf / bar chart): counting samples 

in equally-sized bins and plot them 
·  Statistic: Function of random samples 

–  sample mean and variance, maximum/minimum, etc.  
·  Sufficient Statistics 

–  minimum number of statistics to remember all samples 
–  for Gaussian r.v. need count, sample mean and variance 
–  for some r.v.’s, no sufficient statistics, need all samples 

Function of Random Variables 
·  Function of r.v.’s is also a r.v. 

–  e.g. X=U+V+W, if we know f(u,v,w) how about f(x) ? 
–  e.g. sum of dots on two dices 

·  Problem easier for known and popular r.v.’s 
–  e.g. if U and V are independent Gaussian, so is X=U+V 

–  e.g. if W and Z are independent uniform, is Y=W+Z uniform? 
·  Sample mean of n independent samples of Gaussian r.v.’s is also 

Gaussian, show that: 

·  Average of two independent samples of uniform r.v.’s form a 
triangular shape p.d.f.  

·  How about n samples and n is very large? 
–  Law of large numbers – asymptotic Normal p.d.f. !! 
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Transformation of Random Variables 
·  Given random vectors 
·  We know  
·  Given p.d.f. of                                         how to derive p.d.f. for     ? 
·  If the transformation is one-to-one mapping, we can derive an 

inverse transformation as: 
·  We define the Jacobian matrix as: 

·  We have 
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Probability Theory Recap 
·  Probability Theory Tools 

–  fuzzy description of phenomena 
–  statistical modeling of data for inference 

·  Statistical Inference Problems 
–  Classification: choose one of the stochastic sources 
–  Decision and Hypothesis Testing: comparing two stochastic 

assumptions and decide on how to accept one of them 
–  Estimation: given random samples from an assumed distribution, find 

“good” guess for the parameters 
–  Prediction: from past samples, predict next set of samples 
–  Regression (Modeling): fit a model to a given set of samples 

·  Parametric vs. Non-parametric Distributions 
–  parsimonious or extensive description (model vs. data) 
–  Sampling, data storage and sufficient statistics 

·  Real-World Data vs. Ideal Distributions 
–  “there is no perfect goodness-of-fit” 
–  ideal distributions are used for approximation 
–  sum of random variables and Law of Large Numbers 
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Information Theory & Shannon 
·  Claude E. Shannon (1916-2001, from Bell Labs to MIT): Father of 

Information Theory, Modern Communication Theory … 
·  Information of an event:  
·  Entropy (Self-Information) – in bit, amount of info in a r.v. 

–  Entropy represents average amount of information in a r.v., in other 
words, the average uncertainty related to a r.v. 

·  Contributions of Shannon: 
–  Study of English – Cryptography Theory, Twenty Questions game, 

Binary Tree and Entropy, etc. 
–  Concept of Code – Digital Communication, Switching and Digital 

Computation (optimal Boolean function realization with digital relays 
and switches) 

–  Channel Capacity – Source and Channel Encoding, Error-Free 
Transmission over Noisy Channel, etc. 

–  C. E. Shannon, “A Mathematical Theory of Communication”, Parts 1 
& 2, Bell System Technical Journal, 1948. 

–  He should have won a Nobel Prize for his contributions (1948 is also 
the year of the discovery of transistor at Bell Labs) 
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Joint and Conditional Entropy 
·  Joint entropy: average uncertainty about two r.v.’s; average amount of 

information provided by two r.v.’s. 
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·  Conditional entropy: average amount of information (uncertainty) 
of Y after X is known. 

·  Chain Rule for Entropy : 

·  Independence: 
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Mutual Information 
·  Definition :  
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·  Intuitive meaning of mutual information: given two r.v.’s, X and Y, 
mutual information I(X,Y) represents average information about Y 
(or X) we can get from X (or Y).   

·  Maximization of I(X,Y) is equivalent to establishing a closer 
relationship between X and Y, i.e., obtaining a low-noise 
information channel between X and Y. 
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Shannon’s Noisy Channel Model 
·  Shannon’s Noisy Channel Model 

·  A Binary Symmetric Noisy Channel (Modem Application) 

·  Channel Capacity  

·  p(X) & p(Y|X) can be given by design or by nature. 
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Mutual Information: Example (I) 
·  In Shannon’s noisy channel model:  assume X={0,1} Y={0,1} 
  X is equiprobable Pr(X=0)=Pr(X=1)=0.5    H(X) = 1 bit  

 joint distribution  p(X,Y)=p(X) p(Y|X) 
–  Case I : p=0.0 (noiseless) 

–  Case II: p=0.1 (weak noise) 

–  Case III: p=0.4 (strong noise) 
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Mutual Information Example(II): 
Identifying keywords in Text Categorization 

Sports Politics Economy others News 
Archive 

3,245 documents 7,254 documents 6,785 documents 1,134 documents 

·  All documents contain 10,345 distinct words in total (vocabulary) 
·  How to identify which words are more informative with respect to any one 

topic?  (keywords of a topic) 
·  Use Mutual information as a criterion to calculate correlation of each word 

with any one topic. 
·  Example: word “score” vs. topic “sports”    

–  Define two binary random variables: 
 X: a document’s topic is “sports” or not. {0,1} 
 Y: a document contains “score” or not. {0,1} 
–  I(X,Y)   relationship between word “score” vs. topic “sports”  
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Identifying keywords in Text Categorization 
·  Count documents in archive to calculate p(X,Y) 

·  How about word “what” – topic “sports” 

·  “score” is a keyword for the topic “sports”; “what” is not; 
 

archive in the docs of # total
score"" contains and sports"" c with topidocs of #

)1,1( === YXp

archive in the docs of # total
score"" containst don' and sports"" c with topidocs of #

)0,1( === YXp

p(X,Y) 0 1 
0 0.802 0.022 
1 0.106 0.070 

X 

Y“score” 

126.0

)()(
),(

log),(),(
{0,1} {0,1}

2

=

= ∑ ∑
∈ ∈x y ypxp

yxp
yxpYXI

0.908 0.092 

0.824 

0.176 

p(X,Y) 0 1 
0 0.709 0.115 
1 0.153 0.023 

Y“what” 

000070.0

)()(
),(

log),(),(
{0,1} {0,1}

2

=

= ∑ ∑
∈ ∈x y ypxp

yxp
yxpYXI

0.862 0.138 

0.824 

0.176 

X 

Identifying keywords in Text Categorization 

·  For topic Ti, choose its keywords (most relevant) 
–  For each word Wj in vocabulary, calculate I(Wj,Ti) ; 
–  Sort all words based on I(Wj,Ti) ; 
–  Keywords w.r.t. topic Ti :  top N words in the sorted list. 

·  Keywords for the whole text categorization task: 
–  For each word Wj in vocabulary, calculate 

–  Sort all words based on I(Wj) or I’(Wj). 
–  Top M words in the sorted list. 
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Bayes’ Theorem Applications 
·  Bayes’ Theorem for Channel Decoding 
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Kullback-Leibler (KL) Divergence 
·  Distance measure between two p.m.f.’s (relative entropy) 

–  D(p||q)>=0 and D(p||q)=0 if only if q=p 
·  KL Divergence is a measure of the average distance between two 

probability distributions.   

·  Mutual information is a measure of independence 

·  Conditional Relative Entropy 
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Classification: Decision Trees 
Decision Tree classification: interpretability 
Example: fruits classification based on features 
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Classification and Regression Tree 
(CART) 

·  Binary tree for classification: each node is attached a YES/NO 
question; Traverse the tree based on the answers to questions; each 
leaf node represents a class. 

·  CART: how to automatically grow such a classification tree on a 
data-driven basis. 

–  Prepare a finite set of all possible questions. 
–  For each node, choose the best question to split the node.   
“best” is in sense of maximum entropy reduction between 
“before splitting” and “after splitting”. 

•  Entropy uncertainty or chaos in data;  
   Small entropy  more homogeneous the data is; less impure 

X

)(
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qX )(
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)(XH
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||
|| )(

2

)(
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q
q

q
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XXH

X
X +

Choose a q from  
the question set to  

maximize the difference  
yes no 

The CART algorithm 
1)  Question set: create a set of all possible YES/NO questions. 
2)  Initialization: initialize a tree with only one node which consists 

of all available training samples. 
3)  Splitting nodes: for each node in the tree, find the best splitting 

question which gives the greatest entropy reduction. 
4)  Go to step 3) to recursively split all its children nodes unless it 

meets certain stop criterion, e.g., entropy reduction is below a 
pre-set threshold OR data in the node is already too little. 

CART method is widely used in machine learning and data mining: 
 
1.  Handle categorical data in data mining; 
2.  Acoustic modeling (allophone modeling) in speech recognition; 
3.  Letter-to-sound conversion; 
4.  Automatic rule generation 
5.  etc. 
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Optimization of objective function (I) 
·  Optimization: 

–  Set up an objective function  Q() ; 
–  Maximize or minimize the objective function with respect to 

the variable(s) in question. 
·  Maximization (minimization) of a function: 

–  Differential calculus; 
•  Unconstrained maximization/minimization 

–  Lagrange Optimization:  
•  Constrained maximization/minimization 
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Karush–Kuhn–Tucker (KKT) conditions 
·  Primary problem: 

·  Introduce KKT multipliers: 

–  For each inequality constraint: 

–  For each equality constraint:  

 

min
x

f (x)

subject to
gi (x) ≤ 0 (i = 1,,m)
hj (x) = 0 ( j = 1,n)

 µi (i = 1,,m)

 λi (i = 1,,m)
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Karush–Kuhn–Tucker (KKT) conditions 
·  Dual problem:   

–  if x* is local optimum of the primary problem, x* 
satisfies: 

·  The primary problem can be alternatively solved by the 
above equations.  

 

 

∇ f (x*) + µi∇gi (x
*) + λi∇hj (x

*) = 0
j=1

l

∑
i=1

m

∑
µi ≥ 0 (i = 1,,m)
µigi (x

*) = 0 (i = 1,,m)

Optimization of objective function (II) 

·  Gradient descent (ascent) method: 

–  Step size is hard to determine 
–  Slow convergence  
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Optimization of objective function (II) 

·  Newton’s method 

–  Hessian matrix is too big; hard to estimate  
–  Quasi-Newton’s method: no need to compute Hessian matrix; quick 

update to approximate it. 

 

Q = f (x)
 Given any initial value x0

f (x) ≈ f (x0 ) +∇f (x0 )(x - x0 )t + 1
2

(x - x0 )t H (x - x0 )

H =

∂2 f (x )
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2
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∂x2

2  ∂2 f (x )
∂x2∂xN

   
∂2 f (x )
∂x1∂xN

∂2 f (x )
∂x2∂xN

 ∂2 f (x )
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x=x0

x* = x0 − H
−1 ⋅∇f (x0 )

x0 

x* 

Optimization Methods 

·  Convex optimization algorithms: 
– Linear Programming 
– Quadratic programming (nonlinear 

optimization)  
– Semi-definite Programming 

·  EM (Expectation-Maximization) algorithm. 

·  Growth-Transformation method. 
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Other Relevant Topics 

·  Statistical Hypothesis Testing 
–  Likelihood ratio testing 

·  Linear Algebra: 
–  Vector, Matrix; 
–  Determinant and matrix inversion; 
–  Derivatives of matrices; 
–  etc. 

·  A good on-line matrix reference manual 
    http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/ 

       http://www.psi.toronto.edu/matrix/matrix.html 


