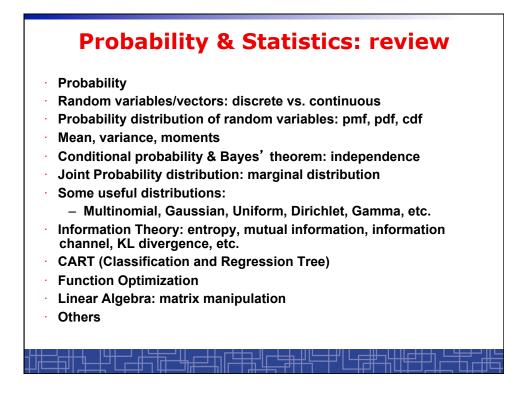
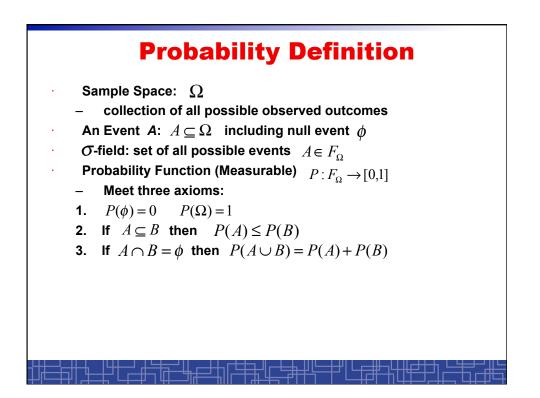


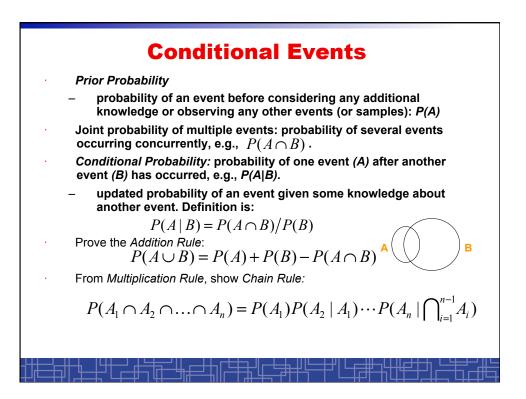
Major Paradigm Shift: Rule/Knowledge-Based → Data-Driven

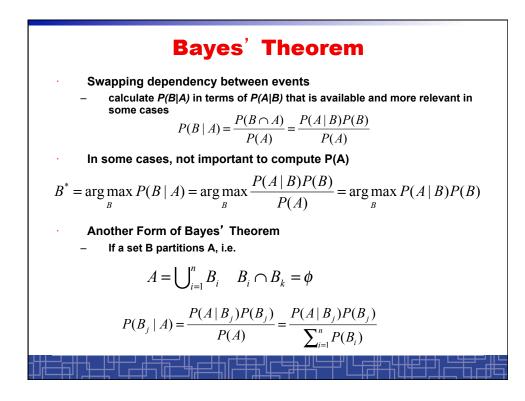
- Rule/Knowledge-based method:
 - Experts analyze some samples to gain knowledge.
 - Knowledge representation: rule-based.
 - Inference based on rules: parsing, etc.
- Data-driven statistical approach:
 - Collect a mass amount of representative data.
 - Manually select a statistical model for the underlying data.
 - Model estimation from the data set automatically.
 - Make decision based on the estimated models.
- Recently, data-driven statistical approach has achieved great successes in many many real-world applications:
 - Automatic speech recognition (ASR)
 - Statistical machine translation
 - Computational linguistics

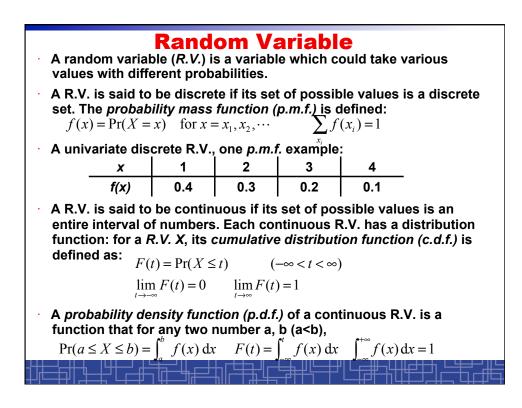


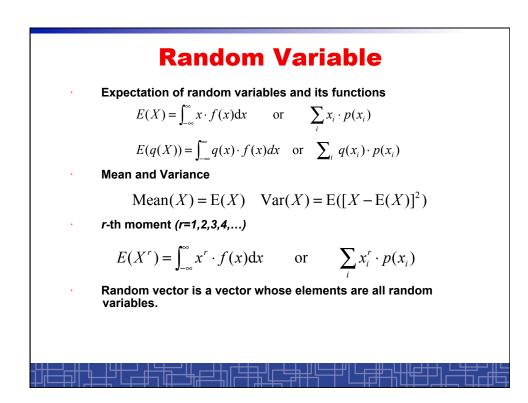


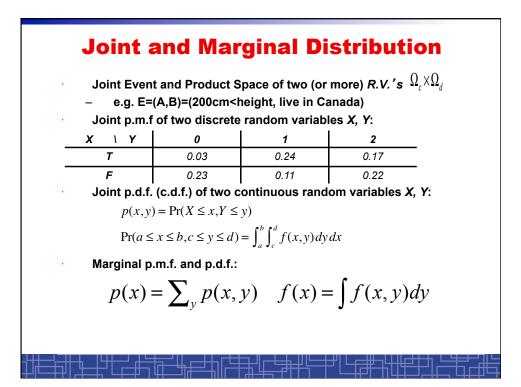
Some Examples						
Example I: experiment to toss a 6-face dice once:						
– Sample space: {1,2,3,4,5,6}						
 Events: X={even number}, Y={odd number}, Z={larger than 3}. 						
– σ -field: set of all possible events						
 Probability Function (Measurable)						
Example II:						
 Sample Space: 						
Ω_c = {x: x is the height of a person on earth}						
– Events:						
• A={x: x>200cm}						
• B={x: 120cm <x<130cm}< th=""></x<130cm}<>						
– σ -field: set of all possible events F_{Ω}						
– Probability Function (Measurable) $P: F_{0} \rightarrow [0,1]$						
– measuring A, B:						
$Pr(A) = \frac{\# \text{ of persons whose height over 200cm}}{\text{total } \# \text{ of persons in the earth}}$						
total # of persons in the earth						
╎╫╾╕╫┶╶╟╫╾┙╓╘╪╾╢╓╼┼╖╓╘╪╕╢╓╘╪╢╚═┼╜╙┎╒╫┑╙╫╔┽┾╖┕╘╪═┙║╘ ┼╓═╪╢┝╾╪╵┕┍═╬┑╙═╼╫╔╴┼╖╚╪╕╢╓╴╪╗┿╹╴┼╵┕╼╬┥╙╟┇╧┑┍╴╘┰╒╫╕						



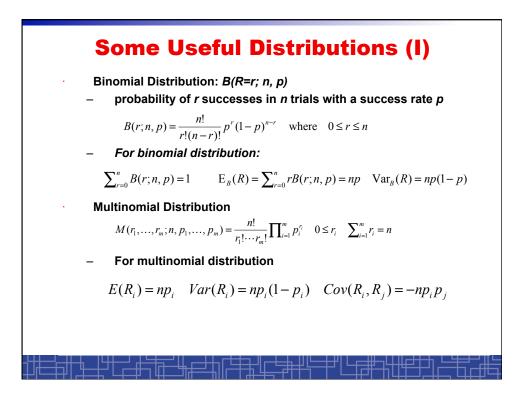


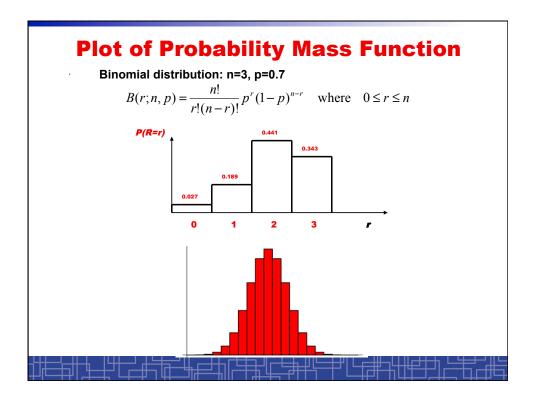


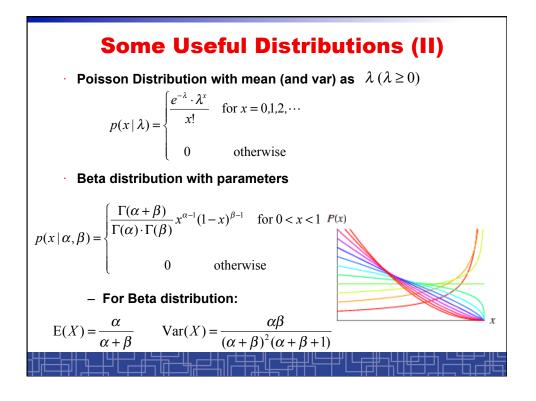




	Conditional Distribution of RVs
•	Conditional p.m.f. or p.d.f. for discrete or continuous R.V.'s $f(x y) = f(x,y) / f(y)$
	Conditional Expectation
	$E(q(X) Y = y_0) = \int_{-\infty}^{\infty} q(x) f(x y_0) dx \text{or} \sum_i q(x_i) p(x_i y_0)$
	Conditional Mean: E(X Y = y ₀) = $\int x \cdot f(x y_0) dx$
	Independence: f(x, y) = f(x)f(y) $f(x y) = f(x)$
	Covariance between two R.V.'s
	Cov(X,Y) = E([X - E(X)][Y - E(Y)])
	$= \iint_{x} (x - E(X))(y - E(Y)) \cdot f(x, y) \mathrm{d}x \mathrm{d}y$
	Uncorrelated R.V.' s:
	Cov(X, Y) = E([X - E(X)][Y - E(Y)]) = 0
	┶╶┟┥┾╾┙┟╧╪╾┙╢┍═┽┧╓╧╪╕╢┍╼╘╪╷╢╚═╪╜╟┕╒╬╾╽╢╔╧┾┑┕╘╪═┵╢ ╪═╅╵┕╤╪┑╙╅═╝╠═╧╢╓┍┼╗╘╤╶┦┼┑╶┼╵┕╼┾╛╴╢╙╪╍┙┍╅═┿







Some Useful Distributions (III)

Dirichlet distribution: a random vector ($X_1,...,X_k$) has a Dirichlet distribution with parameter vector ($\alpha_1,...,\alpha_k$) (for all $\alpha_k>0$) if

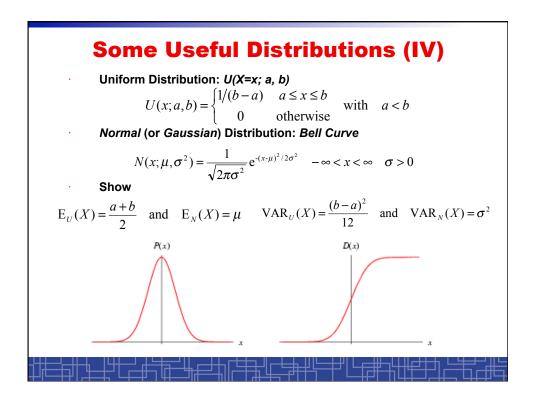
$$p(X_1, \dots, X_k \mid \alpha_1, \dots, \alpha_k) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} x_1^{\alpha_1 - 1} \cdots x_k^{\alpha_k - 1}$$

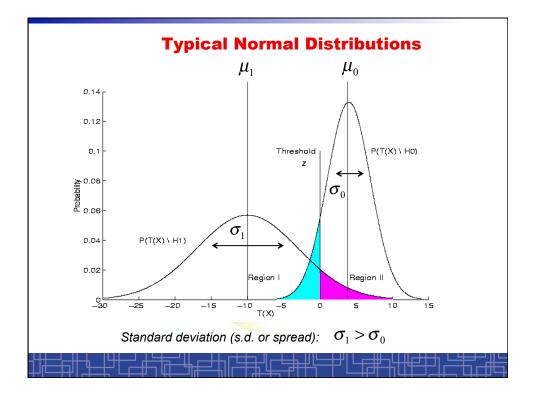
for all $x_i > 0$ $(i = 1, 2, \dots, k)$ and $\sum_{i=1}^k x_i = 1$.

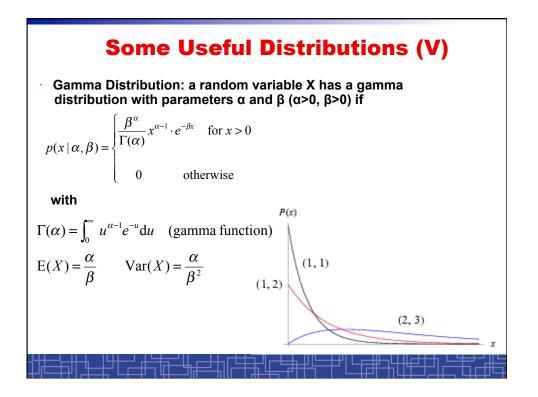
- For Dirichlet distribution:

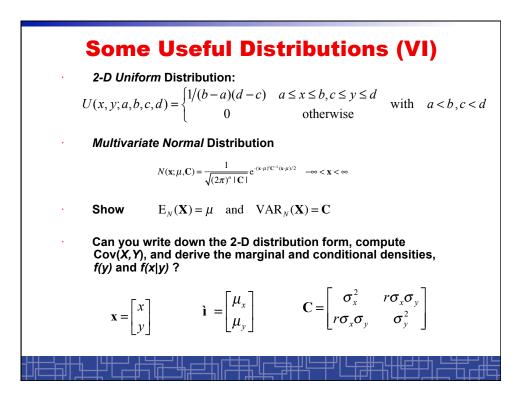
Denote
$$\alpha_0 = \sum_{i=1}^k \alpha_i$$

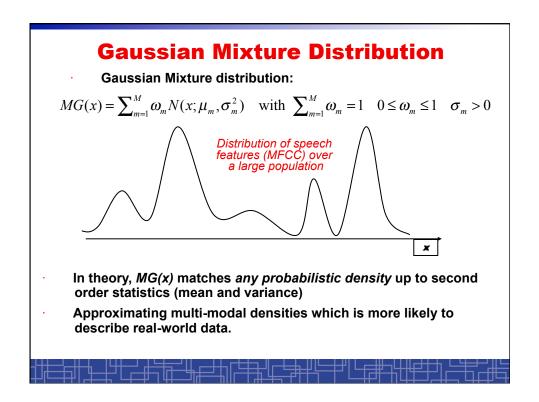
 $E(X_i) = \frac{\alpha_i}{\alpha_0} \quad Var(X_i) = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$
 $Cov(X_i, X_j) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$

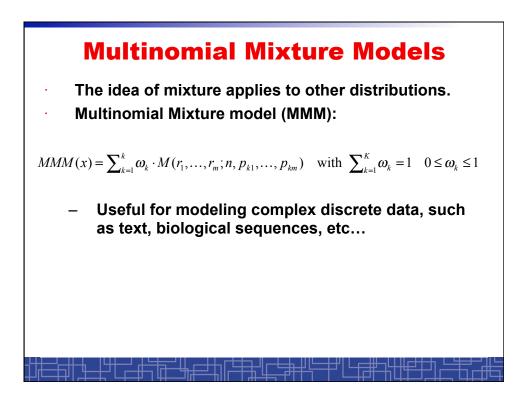


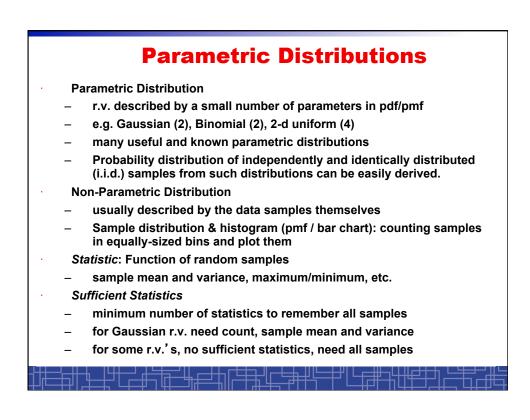


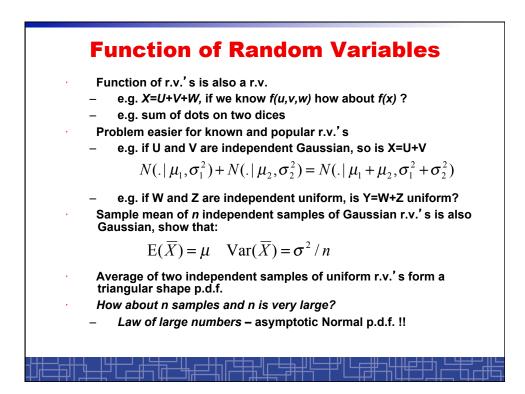












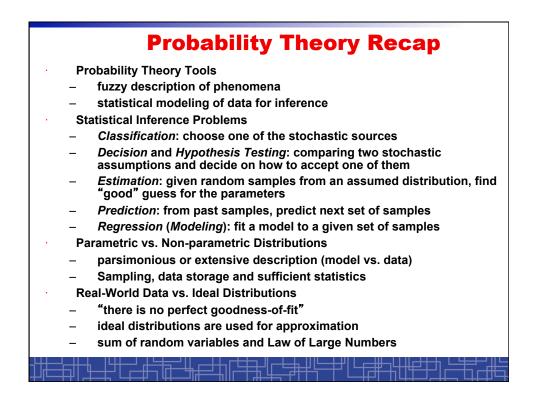
Prepared by Prof. Hui Jiang (COSC6328)

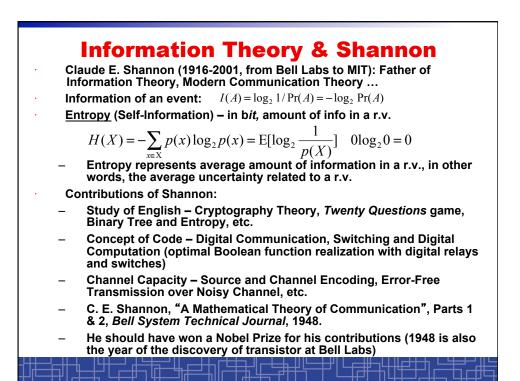
- Given random vectors $\vec{X} = (X_1, \dots X_n)$ and $\vec{Y} = (Y_1, \dots, Y_n)$
- We know $Y_1 = g_1(\vec{X}), \dots, Y_n = g_n(\vec{X})$
- Given p.d.f. of \vec{X} , $p_X(\vec{X}) = p_X(X_1, \dots X_n)$, how to derive p.d.f. for \vec{Y} ?
- · If the transformation is one-to-one mapping, we can derive an inverse transformation as: $X_1 = h_1(\vec{Y}), \dots, X_n = h_n(\vec{Y})$
- We define the Jacobian matrix as:

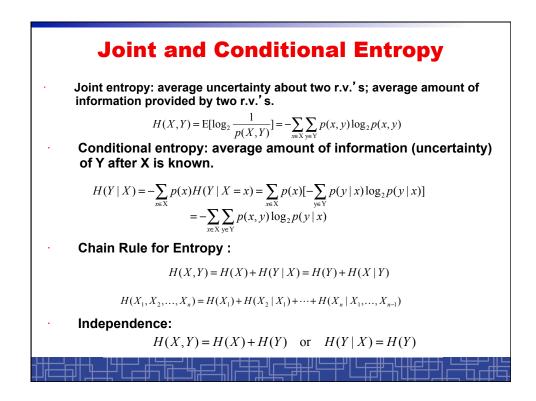
$$T(\vec{Y}) = \begin{bmatrix} \frac{\partial h_1}{\partial Y_1} & \cdots & \frac{\partial h_1}{\partial Y_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial h_n}{\partial Y_1} & \cdots & \frac{\partial h_n}{\partial Y_n} \end{bmatrix}$$

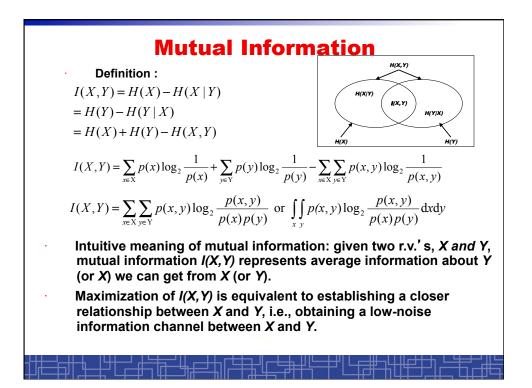
• We have

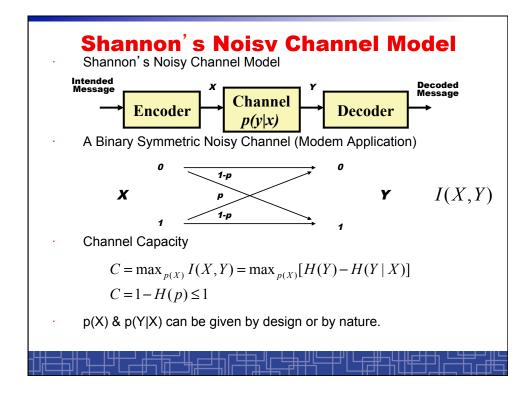
$$p_{Y}(\vec{Y}) = p_{X}(h_{1}(\vec{Y}), \cdots h_{n}(\vec{Y})) \cdot \left| J(\vec{Y}) \right|$$

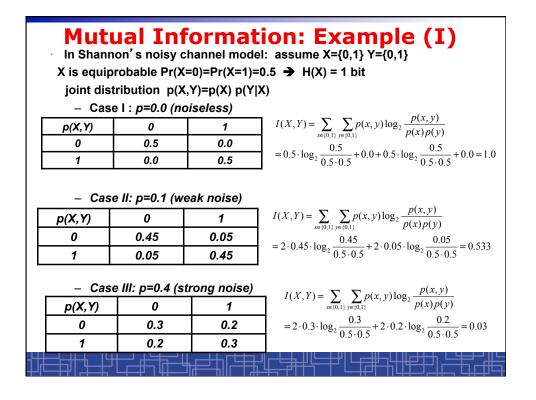


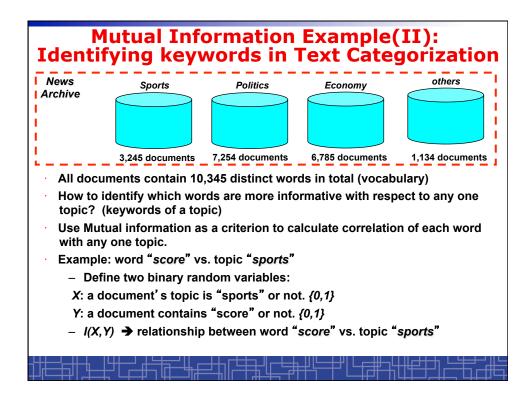


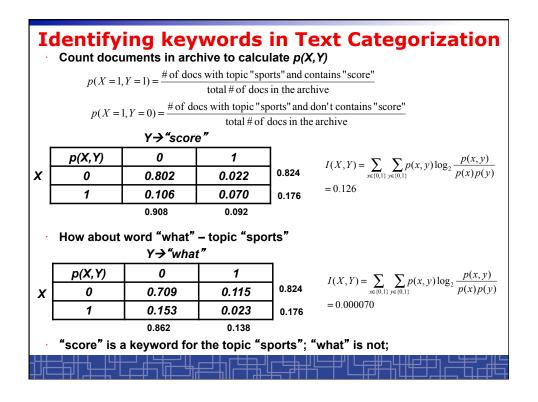










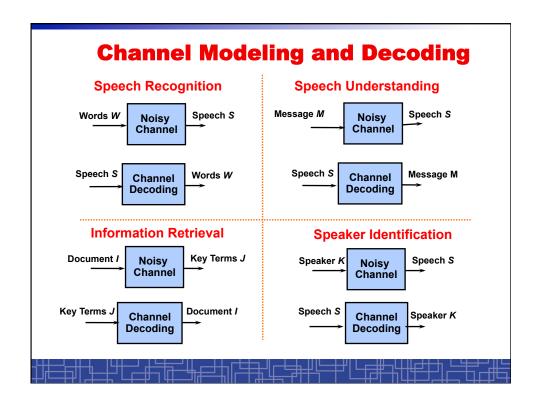


Identifying keywords in Text Categorization

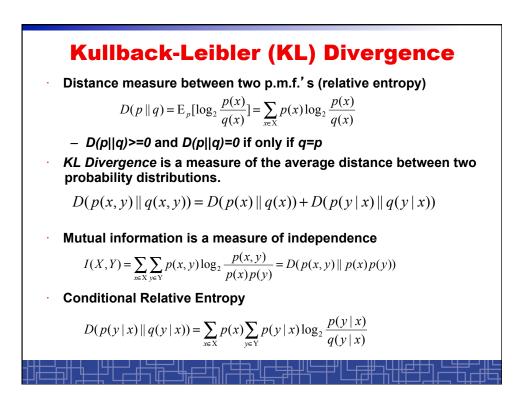
- For topic *Ti*, choose its keywords (most relevant)
 - For each word W_j in vocabulary, calculate I(W_j,T_i);
 - Sort all words based on *I(W_j,T_i)*;
 - Keywords w.r.t. topic *Ti*: top N words in the sorted list.
- Keywords for the whole text categorization task:
 - For each word W_j in vocabulary, calculate

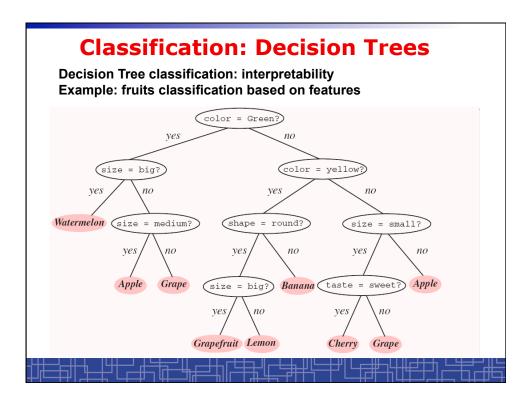
$$I(W_{j}) = \frac{1}{|T|} \sum_{i=1}^{|T|} I(W_{j}, T_{i}) \text{ or } I'(W_{j}) = \max_{i} I(W_{j}, T_{i})$$

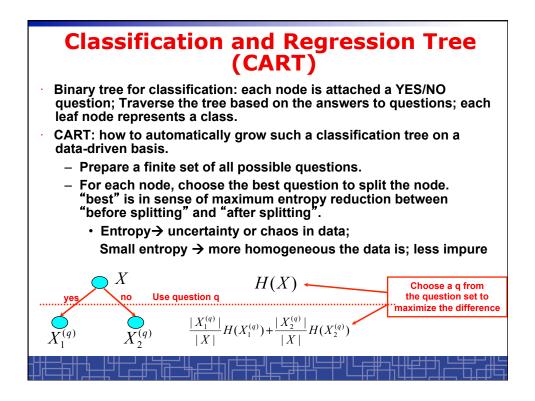
- Sort all words based on *I(W_j)* or *I'(W_j)*.
- Top *M* words in the sorted list.

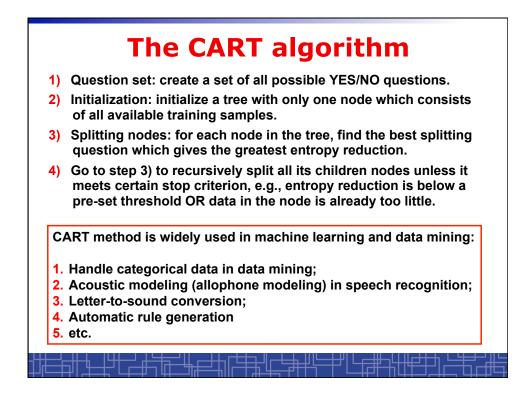


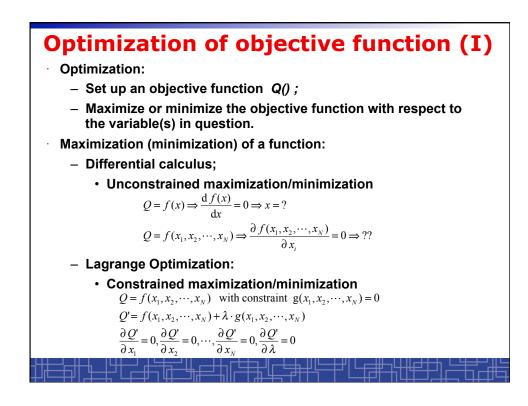
$I^* = \arg\max_{I} I$	$P(I \mid \hat{O}) = \arg \prod_{I}$	$\max \frac{P(\hat{O} \mid I)F}{P(\hat{O})}$	$\frac{P(I)}{I} = \arg \max_{I}$	$P(\hat{O} \mid I)P(I)$
Application	Input	Output	p(l)	p(0 I)
Speech Recognition	Word Sequence	Speech Features	Language Model (LM)	Acoustic Model
Character Recognition	Actual Letters	Letter images	Letter LM	OCR Error Model
Machine Translation	Source Sentence	Target Sentence	Source LM	Translation (Alignment) Model
Text Understanding	Semantic Concept	Word Sequence	Concept LM	Semantic Model
Part-of-Speech Tagging	POS Tag Sequence	Word Sequence	POS Tag LM	Tagging Mode











Karush–Kuhn–Tucker (KKT) conditions Primary problem:
$\min_{\mathbf{x}} f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \le 0 \qquad (i = 1, \dots, m)$ $h_j(\mathbf{x}) = 0 \qquad (j = 1, \dots, n)$
Introduce KKT multipliers:
– For each inequality constraint: μ_i $(i = 1, \cdots, m)$
– For each equality constraint: λ_i $(i = 1, \dots, m)$
╏╫╾╛╴╫╴┺ ╪┙┍═╪┙╷ _{┻═╧} ┥└┎═╋┑╙╤═╅╖╓╤╪╦┙╓╴┶╪┱┦╚═╪╝╵└╒╪╋╼╟╫╒╧╪┑┕╧╪═┙╫╴

