

HMM Computation(1): Evaluation(I)

- Given a known HMM $\Lambda = \{A, B, \pi\}$, how to compute the probability of an observation data $O = \{o_1, o_2, ..., o_7\}$ generated by the HMM, i.e., $p(O | \Lambda)$.
- Direct computation: In HMM, the observation data O can be generated by any a valid state sequence (with length *T*) with different probability. The probability of *O* generated by the whole model is the summation of all these probabilities. Assume $S=\{s_1, s_2, ..., s_T\}$ is a valid state sequence in HMM,

$$p(O \mid \Lambda) = \sum_{S} p(O, S \mid \Lambda) = \sum_{S} p(S \mid \Lambda) \cdot p(O \mid S, \Lambda)$$
$$= \sum_{s_1 \cdots s_T} \left[p(s_1 \mid \Lambda) \cdot \prod_{t=2}^T p(s_t \mid s_{t-1}, \Lambda) \cdot \prod_{t=1}^T p(o_t \mid s_t, \Lambda) \right]$$
$$= \sum_{s_1 \cdots s_T} \left[\pi_{s_1} \cdot \prod_{t=2}^T a_{s_{t-1}s_t} \cdot \prod_{t=1}^T b_{s_t}(o_t) \right]$$

HMM Computation(1): Evaluation(II)

• For Gaussian mixture CDHMM,

$$p(O \mid \Lambda) = \sum_{s_1 \cdots s_T} \left[\pi_{s_1} \cdot \prod_{t=2}^T a_{s_{t-1}s_t} \cdot \prod_{t=1}^T b_{s_t}(o_t) \right]$$

=
$$\sum_{s_1 \cdots s_T} \left[\pi_{s_1} \cdot \prod_{t=2}^T a_{s_{t-1}s_t} \cdot \prod_{t=1}^T \sum_{k=1}^K N(o_t \mid \mu_{s_tk}, \sum_{s_tk}) \right]$$

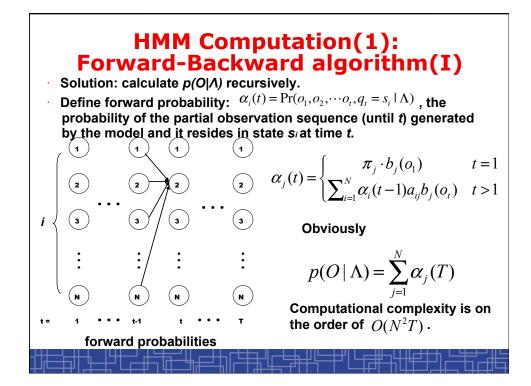
=
$$\sum_{s_1 \cdots s_T} \sum_{l_1 \cdots l_T} \left[\pi_{s_1} \cdot \prod_{t=2}^T a_{s_{t-1}s_t} \cdot \prod_{t=1}^T N(o_t \mid \mu_{s_tl_t}, \sum_{s_tl_t}) \right]$$

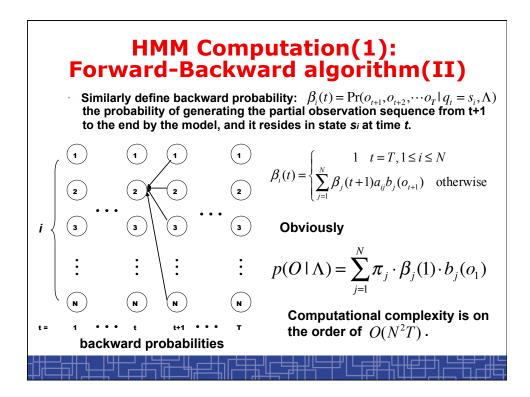
where $I = \{I_1, ..., I_7\}$ is the mixture component label sequence. It $(1 \le I_t \le K)$ is *It*-th Gaussian mixand in *st*-th HMM state.

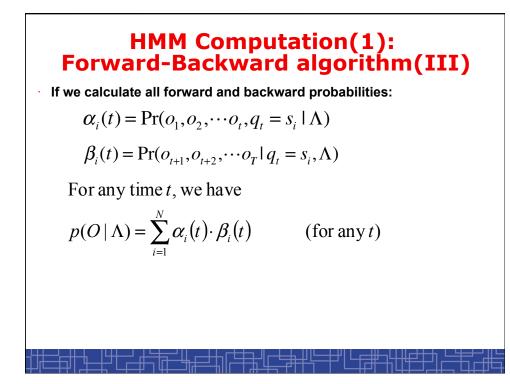
However, the above direct calculation is computationally prohibitive. Even for DDHMM, it is on the order of $O(2T \cdot N^T)$.

– For N=5, T=100, computation on the order of $~2{\times}100{\times}5^{100}\approx10^{72}$.

Obviously, we need an efficient way to calculate $p(O|\Lambda)$.



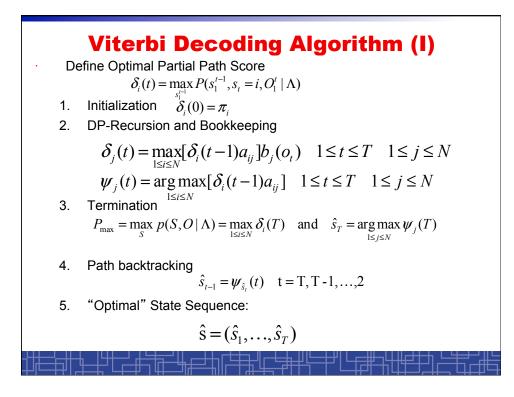


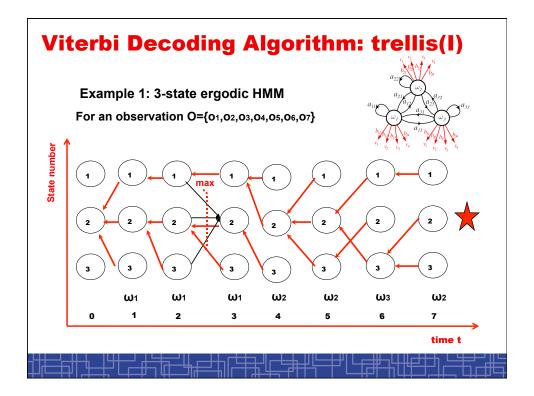


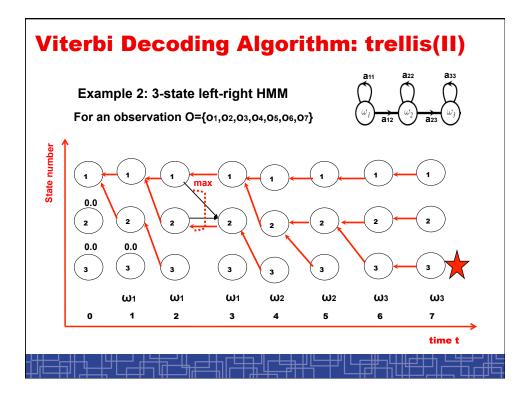
- Given a known HMM $\Lambda = \{A, B, \pi\}$ and an observation data sequence $O=\{o_1, o_2, ..., o_7\}$, how to find the optimal state sequence associated with the given observation sequence O?
- Optimal in what sense??
 - Could be locally optimal. For any time instant t, find a single best state st → generate a path from s1 to sT.
 - Prefer a global optimization → find a single best state sequence (also called a path in HMM), which is optimal as a whole.

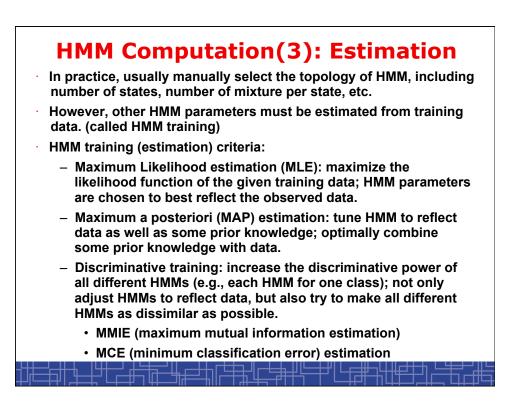
$$S^* = \underset{S}{\operatorname{arg\,max}} p(S \mid O, \Lambda) = \underset{S}{\operatorname{arg\,max}} p(S, O \mid \Lambda)$$
$$S^* = \{s_1^*, s_2^*, \cdots, s_T^*\} = \underset{S_T \cdots \in S_T}{\operatorname{arg\,max}} p(s_1, \cdots, s_T, o_1, \cdots o_T \mid \Lambda)$$

- Viterbi algorithm: find the above optimal path efficiently.









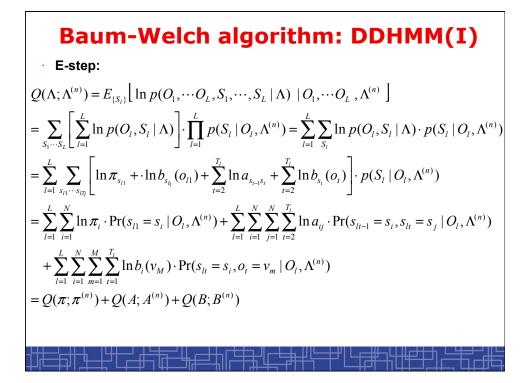
ML estimation of HMM: Baum-Welch method

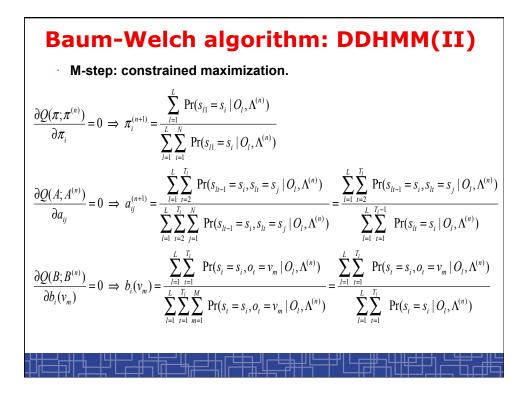
- HMM parameters include: $\Lambda = \{A, B, \pi\}$
- Given a set of observation data from this HMM, e.g.
- $D = \{O_1, O_2, ..., O_L\}$, each data O_l is a sequence presumably generated by the HMM
- Maximum Likelihood estimation: adjust HMM parameters to maximize the probability of observation set *D*: $\Lambda = \{A, B, \pi\}$

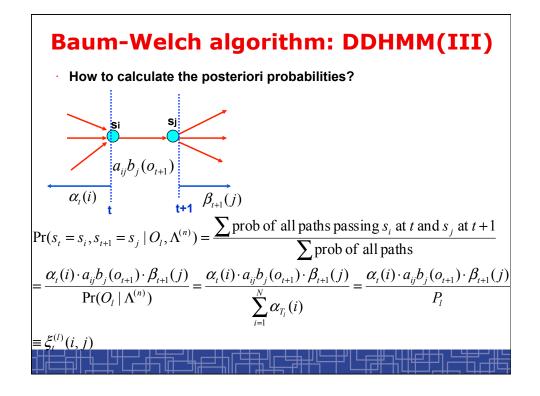
$$\Lambda_{ML} = \underset{\Lambda}{\operatorname{arg\,max}} p(D \mid \Lambda) = \underset{\Lambda}{\operatorname{arg\,max}} p(O_1, O_2, \cdots, O_L \mid \Lambda)$$

Similar to GMM, no simple solution exists.

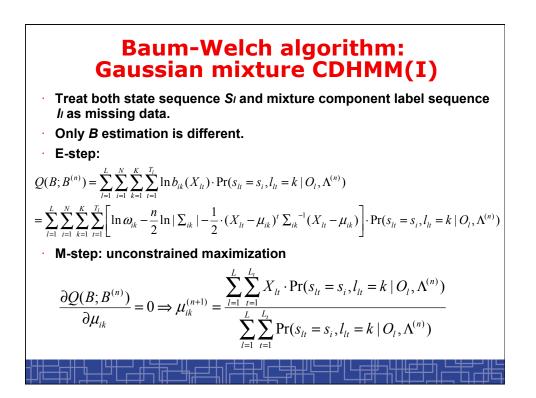
- Baum-Welch method: iterative estimation based on EM algorithm
 - For DDHMM: for each data sequence O_I={o₁, o₁, ..., o_I, treat its state sequence S_I={s₁,...,s_I} as missing data.
 - For Gaussian mixture CDHMM: treat both state sequence S_l and mixture component label sequence l_l={l_l,...,l_lτ} as missing data.



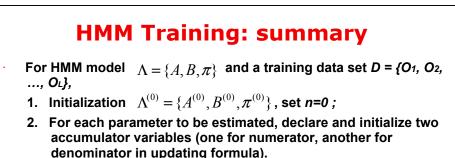




$\begin{aligned} \textbf{Baum-Welch algorithm: DDHMM(IV)} \\ \cdot \text{ Final results: one iteration, from } \Lambda^{(n)} &= \{A^{(n)}, B^{(n)}, \pi^{(n)}\} \\ \pi_{i}^{(n+1)} &= \frac{\sum_{l=1}^{L} \Pr(s_{l1} = s_{i} \mid O_{l}, \Lambda^{(n)})}{\sum_{l=1}^{L} \sum_{i=1}^{N} \Pr(s_{l1} = s_{i} \mid O_{l}, \Lambda^{(n)})} = \sum_{l=1}^{L} \sum_{j=1}^{N} \xi_{1}^{(l)}(i, j) \\ a_{ij}^{(n+1)} &= \frac{\sum_{l=1}^{L} \sum_{i=2}^{T} \Pr(s_{lt-1} = s_{i}, s_{lt} = s_{j} \mid O_{l}, \Lambda^{(n)})}{\sum_{l=1}^{L} \sum_{i=2}^{T} \sum_{j=1}^{N} \Pr(s_{lt-1} = s_{i}, s_{lt} = s_{j} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=2}^{T} \sum_{j=1}^{N} \xi_{t-1}^{(l)}(i, j)}{\sum_{l=1}^{L} \sum_{i=2}^{T} \sum_{j=1}^{N} \Pr(s_{l} = s_{i}, o_{t} = v_{m} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=2}^{T} \sum_{j=1}^{N} \xi_{t}^{(l)}(i, j) \cdot \delta(o_{lt} - v_{m})}{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{m=1}^{N} \Pr(s_{t} = s_{i}, o_{i} = v_{m} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{j=1}^{N} \xi_{t}^{(l)}(i, j) \cdot \delta(o_{lt} - v_{m})}{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{m=1}^{N} \Pr(s_{i} = s_{i}, o_{i} = v_{m} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{j=1}^{N} \xi_{t}^{(l)}(i, j) \cdot \delta(o_{lt} - v_{m})}{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{m=1}^{N} \sum_{m=1}^{N} \Pr(s_{i} = s_{i}, o_{i} = v_{m} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{j=1}^{N} \xi_{t}^{(l)}(i, j) \cdot \delta(o_{lt} - v_{m})}{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{m=1}^{N} \sum_{m=1}^{N} \sum_{m=1}^{N} \Pr(s_{i} = s_{i}, o_{i} = v_{m} \mid O_{l}, \Lambda^{(n)})} = \frac{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{j=1}^{N} \xi_{t}^{(l)}(i, j) \cdot \delta(o_{lt} - v_{m})}{\sum_{l=1}^{L} \sum_{i=1}^{T} \sum_{m=1}^{N} \sum_{$



$$\begin{split} & \frac{\partial \mathcal{Q}(B;B^{(n)})}{\partial \Sigma_{ik}} = 0 \Rightarrow \Sigma_{ik}^{(n+1)} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{L_{l}} (X_{ll} - \mu_{ik}^{(n)})^{t} \cdot (X_{ll} - \mu_{ik}^{(n)}) \cdot \Pr(s_{ll} = s_{i}, l_{ll} = k | O_{l}, \Lambda^{(n)})}{\sum_{l=1}^{L} \sum_{t=1}^{L} \Pr(s_{ll} = s_{i}, l_{ll} = k | O_{l}, \Lambda^{(n)})} \\ & \frac{\partial \mathcal{Q}(B;B^{(n)})}{\partial \omega_{ik}} = 0 \Rightarrow \omega_{ik}^{(n+1)} = \frac{\sum_{l=1}^{L} \sum_{t=1}^{L_{l}} \Pr(s_{ll} = s_{i}, l_{ll} = k | O_{l}, \Lambda^{(n)})}{\sum_{l=1}^{L} \sum_{t=1}^{L} \sum_{k=1}^{K} \Pr(s_{ll} = s_{i}, l_{ll} = k | O_{l}, \Lambda^{(n)})} \\ & \text{where the posteriori probabilities are calculated as:} \\ & \Pr(s_{ll} = s_{i}, l_{ll} = k | O_{l}, \Lambda^{(n)}) \equiv \zeta_{l}^{(l)}(i, k) = \frac{\alpha_{l}^{(l)}(i) \cdot \beta_{l}^{(l)}(i) \cdot \gamma_{lk}^{(l)}(t)}{P_{l}} \\ & \text{where } \gamma_{lk}^{(l)}(t) = \frac{\omega_{lk}^{(n)} \cdot N(X_{ll} | \mu_{lk}^{(n)}, \Sigma_{lk}^{(n)})}{\sum_{k=1}^{L} \omega_{lk}^{(n)} \cdot N(X_{ll} | \mu_{lk}^{(n)}, \Sigma_{lk}^{(n)})} \end{split}$$



- 3. For each observation sequence *O_l* (*l*=1,2,...,*L*):
 - a) Calculate $\alpha_t(i)$ and $\beta_t(i)$ based on $\Lambda^{(n)}$.
 - b) Calculate all other posteriori probabilities
 - c) Accumulate the numerator and denominator accumulators for each HMM parameter.
- 4. HMM parameters update: $\Lambda^{(n+1)} =$ the numerators divided by the denominators.
- 5. *n*=*n*+1; Go to step 2 until convergence.

