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Automatic Speech Recognition
(ASR)

Concept: a sequence of symbols
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ASR System Components

- Feature Extraction
— framing and short-time spectral/cepstral analysis
- Acoustic Modeling of Speech Units
— fundamental speech unit selection
— statistical pattern matching (HMM unit) modeling
- Lexical Modeling
— pronunciation network
- Syntactic and Semantic Modeling
— deterministic or stochastic finite state grammar
— N-gram language model
- Search and Decision Strategies
— best-first or depth-first, DP-based (or breadth-first) search
— modular vs. integrated decision strategies

ASR Terminology
Vocabulary (Lexicon)
— words that can be recognized in an application
— More words imply more errors and more computation
Grammars
— syntax (word order) that can be used

— the way words are put together to form phrases & sentences,
some are more likely than others

— can be deterministic or stochastic
Semantics

— usually not properly modeled or represented
Keyword Spotting

— listening for a few specific words within an utterance

— Phrase Screening (Rejection): capability to decide whether a
candidate keyword is a close enough match to be declared a
valid keyword

Dept. of CSE, York Univ. 3
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Types Of ASR Systems
(Technology Dimensions)

- Isolated vs. continuous ASR
* Isolated = pauses required between each word
+ Continuous = no pauses required
- Small vs. medium vs. large vocabulary
- Speech unit selection: whole vs. sub-word (phone, syllable, etc.)
* Whole word modeling: each HMM - one word
* requires data collection of all words to be recognized,;
* hard to share data among words; hard to add new words
* Sub-word modeling: each HMM - phoneme/syllable
» Solves all the above problems;

* BUT poor to model coarticulation > use context-
dependent sub-word models: e.g., bi-phone, tri-phone, etc.

- Read vs. spontaneous (degree of fluency)
- Multilingual and dialect/accent variations

ASR Formulation

Words W Noisy _§peech X
Channel

Speech X Channel | Words W
Decoding

- ASR can be viewed as a (noisy) channel decoding or pattern
classification problem.
- The solution to ASR (the plug-in MAP decision rule):

W= argmax p(W | X) =argmax P(W)- p(X |W)
WweQ WeQ
=argmax P.(W)-p, (X W)

WeQ
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. ASR Solution
W =argmax p(W | X)=argmax P(W)- p(X W)

WeQ WeQ

=argmax P.(W)-p, (X W)

weQ

P (X |W) — Acoustic Model (AM): gives the probability of
generating feature X when W is uttered.

— Need a model for every W to model all speech signals
(features) from W > HMM is an ideal model for speech

Speech unit selection: what speech unit is modeled by each
HMM? (phoneme, syllable, word, phrase, sentence, etc.)

* Sub-word unit is more flexible (better)

P.(W)— Language Model (LM): gives the probability of W (word,
phrase, sentence) is chosen to say.

Need a flexible model to calculate the probability for all kinds
of W > Markov Chain model (n-gram)

Search space Q

HMM: an ideal speech model

e OW Wy

- Variations in speech signals: temporal & spectral
- Each state represents a process of measurable observations.

- Inter-process transition is governed by a finite state Markov
chain.

- Processes are stochastic and individual observations do not
immediately identify the hidden state.

HMM models spectral and temporal variations simultaneously

Dept. of CSE, York Univ.
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Acoustic Modeling of Speech
Units and System Performance

Word Accuracy

S]
Training
Data # of Training Data
In a typical system, each phoneme in
the language is modeled by a 3-state Up to thousand of hours
left-to-right continuous density of speech data have been
Gaussian mixture HMM (CDHMM), used to train HMM’ s

and background noise is modeled by a
1-state CDHMM

Lexical Modeling

Assume each HMM - a monophone model (context-independent)

American English: 42 monophone > 42 distinct HMMs
concatenation of phone models (phone HMM’ s)
Lexicon: /science/ = [/s/+/ai/+/e/+In/+/s] or [s/+[ai/+In/+/s]
multiple pronunciations and pronunciation network

Dept. of CSE, York Univ.
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Word-Juncture Modeling

Co-articulation effect
— soft change:
 simple concatenation of word models (word HMM’ s)
» possible pronunciation variations
— hard change: “did you” = /d/+/i/+/dzj/+/ul
— source of major errors in many ASR systems

— easier to handle in syllabic Ian'cvxluages with open syllables (vowel or
nasal endings, e.g. Japanese, Mandarin, Italian)

From Words to Word Sequences

word 2> word sequence - beyond

1571 56/

Syntax Model (Grammar Network): a huge HMM network (a huge
composite HMM) to represent all possible and valid word sequences

— Finite state approximation of word constraints
— Deterministic or stochastic finite state grammar
— Large word network for large ASR problems (e.g. |V|=60K)

Dept. of CSE, York Univ. 7



Prepared by Prof. Hui Jiang
(CSE6328)

A Finite-State Grammar Example

= Finite-state grammar for a simple account query task:

=Each arc represents a word or phrase except those marked
"*" which allow parts of the phrase to be bypassed.

=*This grammar allows phrases such as "Please tell me my
checking account balance.”

checking

Deterministic or
Stochastic FSG

Other examples of Grammar Network

CoO—Cv
/—etc ﬁ
N - J

'.
CaD)

call

Word-loop grammar:

For all possible sentences.

*Each branch represents a Grammar for Voice Dialing
word in vocabulary

*May add transition proba-

bilities from language

models
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Modeling Triphone (Biphone)
- Monophone modeling is too simple to model coarticulation
phenomenon ubiquitous in speech.

- Modeling context-dependent phonemes: biphone, triphone, etc.
— American English: 42X42X42 triphones - 74,088 HMMs

- The idea of concatenation equally applies to context-dependent
HMMs except context agreement between adjacent HMMs, which
may complicate network especially in boundary.

/a-s+ai/ /m-s+a/

[ X X ]
/m-s+ai/

/s-ai+e/ /ai-e+n/ /e-n+s/

[ X X ]
/z-s+ai/

[ X X ]
/m-s+z/

Example (1): grammar network
expansion with monophone HMMs

Start

End

Dept. of CSE, York Univ.
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Example (2): grammar network expansion
with word-internal triphone HMMs

SR
Sm“\ - N /@" End
(e

Example (3): grammar network expansion
with cross-word triphone HMMs

- p
@ Start]_ >

D

/

/@—> End
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ASR: Viterbi search

- Assume we build the grammar network for the task, and all physical
HMMs attached in the network have been estimated.

- An unknown speech utterance, 2> a sequence of feature vectors Y.
- Speech recognition is nothing more than a viterbi search:
— The whole network viewed as a composite HMM A.

— Yis viewed as input data, find the optimal alignment path
(viterbi path, state sequence) S* traversing the whole network
(from START to END).

S” =argmax Pr(S)- p(Y,S|A)

SeO

= argmax Pr(W;)- p(Y,S1A)

Se®

— Once S*is found, the recognition results (word sequence) can
be derived by backtracking the Viterbi path.

Equivalent or not ?

- Theoretical solution:

W =argmax p(W | X)=argmax P(W)- p(X | W)

well wel

= argmax B.(W)- p, (X | W)

wel’

=argmax Pr(W)- >, p(Y,SIA)

WeQ SeOy,

- Practical solution:

S =argmax Pr(S)- p(Y,S1A)

N=C)

=argmax Pr(W,)- p(Y,S|A)

N=C)

Dept. of CSE, York Univ. 11



Prepared by Prof. Hui Jiang 12-11-04
(CSE6328)

Isolated-word ASR
- Isolated-word speech recognition is a special case:
— Solution 1: building a multi-branch FSG network (one word per
branch).

— Solution 2: no overall network; examine all words one by one;
each time a word = a small HMM network - Viterbi/Forward-
Backward to calculate score.

Please say theisolated | /— > a n t s —> Score = 12.2

command now.
Ants
y)
X
) EDtv
S
Score =29.4
\ / Payback

ASR Problems

W =argmax p(W | X) =argmax P(W)- p(X |W)

WweQ WweQ
=argmax P.(W)-p,(X W)
WeQ

- Training Stage:
— Acoustic modeling: how to select speech unit and estimate
HMMs reliably and efficiently from available speech data.

— Language modeling: how to estimate n-gram model from text
training data; handle data sparseness problem.

- Test Stage:

— Search: given HMM’ s and n-gram model, how to efficiently
search for the optimal path from a huge grammar network.

» Search space is extremely large
+ Call for an efficient pruning strategy

Dept. of CSE, York Univ. 12
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Acoustic Modeling

- Selection of speech Units: what speech unit is modeled by an HMM;
task-dependent.

— Digit/digit-string recognition: a digit by a HMM = 10-12 HMMs

— Large vocabulary: monophone->biphone—->triphone>beyond
HMM topology selection:

— Phoneme: 3-state left-right without skipping state

— Silence or pause: 1-state HMM (with skipping transition)

— Digit/word: 6-12 states left-right no state skipping
HMM type selection:

— Top choice: Gaussian mixture CDOHMM

— Number of Gaussian mixtures in each state could vary
depending on the amount of training data. (e.g., 1,2,...,20)

HMM parameters estimation:
— ML (Baum-Welch algorithm)
— Bayesian: MAP
— Discriminative Training: MMI, MCE, LME

Training Speech Recognizer
(monophone HMMs)

This is a test. Th-i-s i-sat-e - s-t
Training sample = \
a|a Nixjo tix b
ch d thie x w|f g
"hi ki k 1/m n
ng f @ P r s sht
Thousands of training th& V|W Yy Zzh #
samples are combined to | e
build 42 sub-word models,
one for each phoneme. Model Training

Phoneme models

Dept. of CSE, York Univ. 13
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Segmental Training: find the proper
data segment for each HMM

Monophone HMMs

N 3 3 >

~. - ~
~

/5 2 - - - ’
$-b+tu  b-utk u-k+t k-t+i t-it+s i-stt s-thr trHi r-i+p i-p+$
L 1 1 1 1 1 1 1 1 1 J

Reference Segmentation

Triphone HMMs

D N —
) - ) [
, /‘/ ,‘/' ,‘/' '\.\.\

/7 2 " -
$-b+u  b-utk u-k+t  k-tH t-its i-stt  sthr trH r-i+p i-pt$
L 1 1 1 1 1 1 1 1 1 J

Reference Seimentation

~

Reference Segmentation

- Where the segmentation information comes from?
— Human labeling: tedious, time-consuming, expensive;
* Only a small amount is affordable; used for bootstrap.
— Automatic segmentation if an initial HMM set is available.
* Forced-alignment: Viterbi algorithm; Need transcription only
* HMMs + transcription = segmentation information

Transcription: This is a test.
Word network

phoneme network

Run the Viterbi algorithm to backtrack segmentation information

Dept. of CSE, York Univ.
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Embedded Training

- Only need transcription for each utterance; no segmentation is
needed; automatically tune to optimal segmentation during training.

Transcription: This is a test.

Word network

phoneme network

* Run the Baum-Welch Algorithm to estimate all Q
parameters in the composite HMM; C..S

* May add optional 1-state silence models between words

HMM Parameters Initialization

- If boundary information is unknown, uniform segmentation seems a
good start.

- A good strategy to avoid bad local maximum in training:
— Progressively increasing complexity of models
— For Gaussian mixture CDOHMM
+ Build a single Gaussian per state; optimize
+ Split the mixture = 2-mixture CDHMM; optimize
* Gradually increase the number of mixtures
— Monophone - triphone > ...

Dept. of CSE, York Univ. 15
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Parameter Tying

- Parameter tying: some model parameters of different classes are
tied to be equivalent to reduce the total number of free parameters.

— Trade-off between resolution and precision
- Why need parameter tying?

— In ASR, we always have tremendous amount of parameters to
be estimated from limited amount of training data.

— In triphone system: 42*42*42*3*10*(39+39*39)+more
— Some triphones seldom occur even in large corpora.

- Manual parameter tying based on prior phonetic knowledge.

- Several automatic methods to tie HMM parameters systematically:
— State-tied CDHMM

— Phonetically Tied Mixtures (PTM) CDHMM

— Semi-Continuous HMM

HMM tying: State-tied vs. PTM

- All allophone models of a phone, to say a
— State-tying triphone CDHMM

la-a+al la-a+c/ la-a+b/

— Phonetically Tied Mixtures (PTM) triphone CDHMM

la-a+al la-a+c/ la-a+b/ lk-a+z/ Iqg-a+z/

A A AR A A A A A AR
N e——

S A S B I S
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Phonetic Decision Tree: HMM state-tying

A phonetic decision tree is built to tie
the same state of a triphone set derived

Initial set of untied states
futial set of untied states from the same monophone.

L-Nasal?

Each phonetic decision tree is a binary
tree in which a question is attached to
each intermediate node.

Each terminal (leaf) node represents a
distinct state cluster in tying.

Given a tree, from root = leaf
— Find the cluster it ties with

Tie states in each leaf node — Even applicable to unseen triphone
©  The questions relate to the (which we don’ t have data at all)
phonetic context to the immediate
left or right.

p . - Data-driven decision tree growing
° Binary question examples: method:

(1) Is the left phone is a nasal? . P
(2) Is the right phone a fricative? — Entropy reduction - likelihood

iai Is the left phone “I"? Increase

Phonetic Decision Tree: HMM state-tying

X represents all data corresponding to the state of one
triphone set. X is a set of feature vectors.

Modeling the data in each node with a single Gaussian model:

q X . . .
— estimate common mean px and covariance Zx:
yes, no
H(X)= [N(X | 3, Z) 1og N(X | 1, %) dX
(q) (q) =C+log|Z
X X! g2y

For any question Q, split data and calculate for each child

node:  H(X“@)=C, +log|Z

Xl(q) |

H(Xé")):C2+log|2

X;‘” |

Choose the question which maximizes entropy reduction:

|X(q |H(X(q)) |X
| X |X|

=1 X5" |- log |2

g*=argmax H(X)— |H(X(‘”)
q

(4) (@) |
X pey

=argmax | X |log|Z, |- X? |-log|Z
q

Dept. of CSE, York Univ. 17
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HMM state-tying using decision tree

@ Y 1)
’::‘l vy t‘ ° 1) Initially train 3-state left-right single
IAJIALA] Gaussian monophone CDHMM.

o //\

t-1y+ng f iy+l s-1y+l

For tri-phones occurring frequently,
gg g g g g g g g Q @g clone its corresponding monophone
as initial, then re-train from data
A A A A ﬁ Al IAAIAL A A A using Baum-Welch algorithm.

For all triphones derived from the
same monophone, building 3
phonetic trees for each state to tie
these states in certain way.

Keeping the state-tying structure,
increment the number of Gaussian
mixand in each state until the
performance is optimal.

Measuring Accuracy (ASR Errors)

Word Accuracy

— In continuous ASR, not easy to count (substitution/deletion/
insertion errors) .

— Minimum Edit distance = minimum substitution + deletion +
insertion errors

— Word Accuracy:

141
Word Accuracy=100% X sub + del + ins

# wordsin correct transcriptions

String Accuracy
— correct recognition of all words in an utterance
Semantic Accuracy

— correct interpretation of meaning of an utterance; take the
correct action based on the utterance; correct recognition of
all semantic attributes

Dept. of CSE, York Univ. 18
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String Edit Distance: minimum errors
Correct: W1 W2 W3 W4 W5 We W7 Ws Wo

Recognized: W1 W2 W10 W5 We Ws Wg

i

S

>

l inst(e%ion
J
—  deletion
e T e s S S )
v Wi ¢2 .3 5 \ subﬂi)tution
TR SO S S N SO Cd3l4
: : : : : : : : P no change
woiz e is s is is laleidds 0 T

Algorithm for Minimum Edit Distance
begin initialize u(), r(), | <- length[U], J <- length[R], D[0,0]=0
i<-0
doi<-i+1
D[i,0] =i
ntili=1

c
o

j<

doj<-j#+1
D[0.j] <-j

until j = J

i<-0;j<-0

do j <-j+1
D[i,j]=min{DI[i-1,j]+1, D[i,j-1]+1, D[i-1,j-11+q(u(i),r(j))}
(insertion) (deletion) (substitutioi of n6 change)
unti

until i =

return DI[l,J]

= }
g

i=J
I

Dept. of CSE, York Univ. 19



Prepared by Prof. Hui Jiang 12-11-04
(CSE6328)

Factors Determining Accuracy

How words are spoken by a speaker
— poor articulation and mispronounced words
— co-articulation by running words together
* this supper = this upper
— speaker characteristics
» speaking rate, loudness, dialect, etc.
The words themselves..

— homophones: similar sounding words (blue -
blew)

— Acoustic confusion
— ambiguity: multiple meanings (checking)

Accuracy (Cont’ d)

The Speaker Population
» general public, naive or frequent users
* Native vs nonnative speakers
The Speaking Environment
* Channel, microphone, ambient noise, etc.
Rejection Processing
* Important component for building intelligent user interface

» Confidence measure needed for error correction, repair,
deciding how much to confirm, partial understanding

Human Factors

* ASR solutions are as much an art form as a science
(sometime proper prompting is very effective)

» Transaction design to maximize success rate

Dept. of CSE, York Univ. 20
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Speech Recognition Difficulties
(Robustness)

Variability of sounds (e.g. words, phrases)

— Within a single speaker: variable length patterns, no clear
boundaries

— Across speakers: accent, style, pronunciation, etc.
Transducer and channel variability
Environmental noise and acoustics
Speaker production errors

— hesitations, repairs, extraneous speech

— variability in expressions

— mismatch in user expectation and system capabilities

DARPA ASR Benchmark

Switchboard
Convecsational -
Spee ~ foreign
Read
=

100%

Speech ", =
WSJ
E o Broadcast
é * Spontaneous 20K Varied Sgeech 2y
o f Speech Microphone “-foreign
[®) .
id ATIS\ \ NAB °®
E{10% |— m I 5
Y @ [} .
@] ‘—‘
; * © -
°
Resource
Management

Courtesy NIST 1999 DARPA
HUB-4 Report, Pallett et al.

1%

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
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