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ASR System Components 
·  Feature Extraction 

–  framing and short-time spectral/cepstral analysis 

·  Acoustic Modeling of Speech Units 
–  fundamental speech unit selection  
–  statistical pattern matching (HMM unit) modeling  

·  Lexical Modeling 
–  pronunciation network 

·  Syntactic and Semantic Modeling 
–  deterministic or stochastic finite state grammar 
–  N-gram language model 

·  Search and Decision Strategies 
–  best-first or depth-first, DP-based (or breadth-first) search 
–  modular vs. integrated decision strategies 

ASR Terminology 
·  Vocabulary (Lexicon) 

–  words that can be recognized in an application  
–  More words imply more errors and more computation 

·  Grammars 
–  syntax (word order) that can be used 
–  the way words are put together to form phrases & sentences, 

some are more likely than others 
–  can be deterministic or stochastic 

·  Semantics 
–  usually not properly modeled or represented 

·  Keyword Spotting 
–  listening for a few specific words within an utterance  
–  Phrase Screening (Rejection): capability to decide whether a 

candidate keyword is a close enough match to be declared a 
valid keyword  
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Types Of ASR Systems 
(Technology Dimensions) 

·  Isolated vs. continuous ASR 
•  Isolated = pauses required between each word 
•  Continuous = no pauses required 

·  Small vs. medium vs. large vocabulary  
·  Speech unit selection: whole vs. sub-word (phone, syllable, etc.) 

•  Whole word modeling: each HMM  one word  
•  requires data collection of all words to be recognized; 
•  hard to share data among words; hard to add new words 

•  Sub-word modeling: each HMM  phoneme/syllable 
•  Solves all the above problems; 
•  BUT poor to model coarticulation   use context-

dependent sub-word models: e.g., bi-phone, tri-phone, etc. 
·  Read vs. spontaneous (degree of fluency)  
·  Multilingual and dialect/accent variations 

 
Noisy 

Channel    

Words W 

ASR Formulation  

Speech X 

 
 Channel 
Decoding    

Speech X Words W 

·  ASR can be viewed as a (noisy) channel decoding or pattern 
classification problem. 

·  The solution to ASR (the plug-in MAP decision rule): 

Ŵ = argmax
W∈Ω

p(W | X) = argmax
W∈Ω

P(W ) ⋅ p(X |W )

= argmax
W∈Ω

PΓ (W ) ⋅ pΛ (X |W )
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ASR Solution  

·                — Acoustic  Model (AM): gives the probability of 
generating feature X when W is uttered.  

–  Need a model for every W to model all speech signals 
(features) from W  HMM is an ideal model for speech 

–  Speech unit selection: what speech unit is modeled by each 
HMM? (phoneme, syllable, word, phrase, sentence, etc.) 

•  Sub-word unit is more flexible (better) 
·         — Language Model (LM): gives the probability of W (word, 

phrase, sentence) is chosen to say.  
–  Need a flexible model to calculate the probability for all kinds 

of W  Markov Chain model (n-gram) 
·  Search space  

)|( WXpΛ

)(WPΓ

Ŵ = argmax
W∈Ω

p(W | X) = argmax
W∈Ω

P(W ) ⋅ p(X |W )

= argmax
W∈Ω

PΓ (W ) ⋅ pΛ (X |W )

Ω

HMM: an ideal speech model 

HMM models spectral and temporal variations simultaneously 

·  Variations in speech signals:  temporal & spectral 
·  Each state represents a process of  measurable observations. 
·  Inter-process transition is governed by a finite state Markov 

chain. 
·  Processes are stochastic and individual observations do not 

immediately identify the hidden state. 
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Word Accuracy 

# of Training Data 

SI 

Acoustic Modeling of Speech 
Units and System Performance 

          HMM 

Training 
 Data 

In a typical system, each phoneme in 
the language is modeled by a 3-state 
left-to-right continuous density 
Gaussian mixture HMM (CDHMM), 
and background noise is modeled by a 
1-state CDHMM 

Up to thousand of hours 
of speech data have been 
used to train HMM’s 

Lexical Modeling 

·  Assume each HMM  a monophone model (context-independent)  
–  American English: 42 monophone  42 distinct HMMs 
–  concatenation of phone models (phone HMM’s) 
–  Lexicon: /science/ = /s/+/ai/+/e/+/n/+/s/ or /s/+/ai/+/n/+/s/ 
–  multiple pronunciations and pronunciation network 

/s/ /s/ /n/ /e/ /ai/ 

/s/ /s/ /n/ /e/ /ai/ 

/0/ 
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Word-Juncture Modeling 
·  Co-articulation effect 

–  soft change: 
•  simple concatenation of word models (word HMM’s) 
•  possible pronunciation variations 

–  hard change: “did you” = /d/+/i/+/dzj/+/u/ 
–  source of major errors in many ASR systems 
–  easier to handle in syllabic languages with open syllables (vowel or 

nasal endings, e.g. Japanese, Mandarin, Italian) 

/d/ /u/ /j/ /d/ /i/ 

/dzj/ 

/sil/ 

/0/ 

From Words to Word Sequences 
·  word  word sequence  beyond 

·  Syntax Model (Grammar Network): a huge HMM network (a huge 
composite HMM) to represent all possible and valid word sequences 
–  Finite state approximation of word constraints 
–  Deterministic or stochastic finite state grammar 
–  Large word network for large ASR problems (e.g. |V|=60K) 

/s1/ /s8/ /s5/ /s4/ /s3/ 

/s6/ 

/0/ 

/s7/ 

/s7/ 

W1 W2 
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A Finite-State Grammar Example 

Uh, 
Please 

what is 

tell me 

give me checking 

savings 

for 

in 

account balance. 

my 

my 

checking 

savings account. 

* 

* 

* 

   Finite-state grammar for a simple account query task: 
 

 Each arc represents a word or phrase except those marked 
"*" which allow parts of the phrase to be bypassed.   

 This grammar allows phrases such as "Please tell me my 
checking account balance." 

Deterministic or  
Stochastic FSG 

Other examples of Grammar Network 

Word-loop grammar:  
 
• For all possible sentences.  
• Each branch represents a 
word in vocabulary 
• May add transition proba-
bilities from language 
models 

Grammar for Voice Dialing 
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Modeling Triphone (Biphone) 
·  Monophone modeling is too simple to model coarticulation 

phenomenon ubiquitous in speech. 
·  Modeling context-dependent phonemes: biphone, triphone, etc. 

–  American English: 42X42X42 triphones  74,088 HMMs 
·  The idea of concatenation equally applies to context-dependent 

HMMs except context agreement between adjacent HMMs, which 
may complicate network especially in boundary. 

/m-s+ai/ /n-s+k/ /e-n+s/ /ai-e+n/ /s-ai+e/ 

/n-s+a/ 

/n-s+z/ 

/a-s+ai/ 

/z-s+ai/ 

Example (1): grammar network 
expansion with monophone HMMs 
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Example (2): grammar network expansion 
with word-internal triphone  HMMs 

Example (3): grammar network expansion 
with cross-word triphone  HMMs 
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ASR: Viterbi search 
·  Assume we build the grammar network for the task, and all physical 

HMMs attached in the network have been estimated. 
·  An unknown speech utterance,  a sequence of feature vectors Y. 
·  Speech recognition is nothing more than a viterbi search: 

–  The whole network viewed as a composite HMM Λ. 
–  Y is viewed as input data, find the optimal alignment path 

(viterbi path, state sequence) S* traversing the whole network 
(from START to END). 

–  Once S* is found, the recognition results (word sequence) can 
be derived by backtracking the Viterbi path. 

S* = argmax
S∈Θ

Pr(S) ⋅ p(Y,S |Λ)

= argmax
S∈Θ

Pr(WS ) ⋅ p(Y,S |Λ)

Equivalent or not ? 

·  Theoretical solution: 

·  Practical solution: 

S* = argmax
S∈Θ

Pr(S) ⋅ p(Y,S |Λ)

= argmax
S∈Θ

Pr(WS ) ⋅ p(Y,S |Λ)

= argmax
W∈Ω

Pr(W ) ⋅ p(Y,S |Λ)
S∈ΟW

∑
)|()(maxarg

)|()(maxarg)|(maxargˆ

WXpWP

WXpWPXWpW
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Γ∈
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Isolated-word ASR 
 ·  Isolated-word speech recognition is a special case: 

–  Solution 1: building a multi-branch FSG network (one word per 
branch). 

–  Solution 2: no overall network; examine all words one by one; 
each time a word  a small HMM network  Viterbi/Forward-
Backward to calculate score. 

e d t e v e 

a n t s 

p e b a k 

EDtv 

Ants 

Payback 

Score = 12.2 

Score = 32.5 

Score = 29.4 

EDtv 

Please say the isolated 
command now. 

ASR Problems 

·  Training Stage: 
–  Acoustic modeling: how to select speech unit  and estimate 

HMMs reliably and efficiently from available speech data. 

–  Language modeling: how to estimate n-gram model from text 
training data; handle data sparseness problem. 

·  Test Stage: 
–  Search: given HMM’s and n-gram model, how to efficiently 

search for the optimal path from a huge grammar network. 
•  Search space is extremely large 
•  Call for an efficient pruning strategy 

Ŵ = argmax
W∈Ω

p(W | X) = argmax
W∈Ω

P(W ) ⋅ p(X |W )

= argmax
W∈Ω

PΓ (W ) ⋅ pΛ (X |W )
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Acoustic Modeling 
·  Selection of speech Units: what speech unit is modeled by an HMM; 

task-dependent.  
–  Digit/digit-string recognition: a digit by a HMM  10-12 HMMs 
–  Large vocabulary: monophonebiphonetriphonebeyond 

·  HMM topology selection: 
–  Phoneme: 3-state left-right without skipping state 
–  Silence or pause: 1-state HMM (with skipping transition) 
–  Digit/word: 6-12 states left-right no state skipping 

·  HMM type selection: 
–  Top choice: Gaussian mixture CDHMM 
–  Number of Gaussian mixtures in each state could vary 

depending on the amount of training data. (e.g., 1,2,…,20) 
·  HMM parameters estimation: 

–  ML (Baum-Welch algorithm) 
–  Bayesian: MAP 
–  Discriminative Training: MMI, MCE, LME 

Training Speech Recognizer 
(monophone HMMs) 

s t 
z 

th e 
i 

o x b 
w f g 

k l m n 
r sh 
y zh # 

ä a n x 

ch d 
h k j 

ng f @ p 
th & v w 

x 
t 

Th-i -s  i-s a  t  -  e   -   s  -  t This is a test. 

Thousands of training 
samples are combined to 
build 42 sub-word models, 
one for each phoneme. Model Training 

Training sample 

Phoneme models 
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Segmental Training: find the proper 
data segment for each HMM  

Reference Segmentation  

$-b+u b-u+k u-k+t k-t+i t-i+s i-s+t s-t+r t-r+i r-i+p i-p+$ 

/b/ /t/ /p/ /u/ 
 

/i/ 

Reference Segmentation  

$-b+u b-u+k u-k+t k-t+i t-i+s i-s+t s-t+r t-r+i r-i+p i-p+$ 

/$-b+u/ /k-t+i/ /i-p+$/ /b-u+k/ 
 

/t-i+s/ 

Monophone HMMs 

Triphone HMMs 

Reference Segmentation 
·  Where the segmentation information comes from? 

–  Human labeling: tedious, time-consuming, expensive; 
•  Only a small amount is affordable; used for bootstrap. 

–  Automatic segmentation if an initial HMM set is available. 
•  Forced-alignment: Viterbi algorithm; Need transcription only 
•  HMMs + transcription  segmentation information 

Transcription:     This        is      a          test. 
Word network 

phoneme network 

Composite HMM 

Run the Viterbi algorithm to backtrack segmentation information  
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Embedded Training 

•  Run the Baum-Welch Algorithm to estimate all 
parameters in the composite HMM; 

•  May add optional 1-state silence models between words 

Transcription:     This        is      a          test. 

Word network 

phoneme network 

Composite HMM 

·  Only need transcription for each utterance; no segmentation is 
needed; automatically tune to optimal segmentation during training. 

HMM Parameters Initialization 
·  If boundary information is unknown, uniform segmentation seems a 

good start.  

·  A good strategy to avoid bad local maximum in training: 
–  Progressively increasing complexity of models 
–  For Gaussian mixture CDHMM 

•  Build a single Gaussian per state; optimize 
•  Split the mixture  2-mixture CDHMM; optimize 
•  Gradually increase the number of mixtures   

–  Monophone  triphone  … 
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Parameter Tying 
·  Parameter tying: some model parameters of different classes are 

tied to be equivalent to reduce the total number of free parameters. 
–  Trade-off between resolution and precision 

·  Why need parameter tying? 
–  In ASR, we always have tremendous amount of parameters to 

be estimated from limited amount of training data. 
–  In triphone system: 42*42*42*3*10*(39+39*39)+more  
–  Some triphones seldom occur even in large corpora. 

·  Manual parameter tying based on prior phonetic knowledge. 

·  Several automatic methods to tie HMM parameters systematically: 
–  State-tied CDHMM 

–  Phonetically Tied Mixtures (PTM) CDHMM 

–  Semi-Continuous HMM 

HMM tying: State-tied vs. PTM 
·  All allophone models of a phone, to say a 

–  State-tying triphone CDHMM 

–  Phonetically Tied Mixtures (PTM) triphone CDHMM 

/a-a+a/ /a-a+c/ /a-a+b/ /k-a+z/ /q-a+z/ 

/a-a+a/ /a-a+c/ /a-a+b/ /k-a+z/ /q-a+z/ 
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Phonetic Decision Tree: HMM state-tying 

•  The questions relate to the 
phonetic context to the immediate 
left or right.  

•  Binary question examples: 
(1)  Is the left phone is a nasal? 
(2)  Is the right phone a fricative? 
(3)  Is the left phone “l”? 
(4)  … 

·  A phonetic decision tree is built to tie 
the same state of a triphone set derived 
from the same monophone. 

·  Each phonetic decision tree is a binary 
tree in which a question is attached to 
each intermediate node. 

·  Each terminal (leaf) node represents a 
distinct state cluster in tying. 

·  Given a tree, from root  leaf 
–  Find the cluster it ties with 
–  Even applicable to unseen triphone 

(which we don’t have data at all) 

·  Data-driven decision tree growing 
method: 

–  Entropy reduction  likelihood 
increase 

Phonetic Decision Tree: HMM state-tying 
·  X represents all data corresponding to the state of one 

triphone set. X is a set of feature vectors. 
·  Modeling the data in each node with a single Gaussian model: 

–  estimate common mean µX and covariance ΣX: 

·  For any question Q, split data and calculate for each child 
node: 

·  Choose the question which maximizes entropy reduction: 

X

)(
1
qX )(

2
qX

yes no 

||log

),|(log),|()(

X

XXXX

C

dXXNXNXH

Σ+=

Σ⋅Σ= ∫ µµ

q 

   ||log)(

   ||log)(

)(
2

)(
1

2
)(

2

1
)(

1

q

q

X
q

X
q

CXH

CXH

Σ+=

Σ+=

||log|| ||log||||log||maxarg

)(
||
||)(

||
||)(maxarg*

)(
2

)(
1

)(
2

)(
1

)(
2

)(
2)(

1

)(
1

qq X
q

X
q

X
q

q
q

q
q

q

XXX

XH
X
XXH

X
XXHq

Σ⋅−Σ⋅−Σ=

−−=



Prepared by Prof. Hui Jiang 
(CSE6328) 

12-11-04 

Dept. of CSE, York Univ. 18 

HMM state-tying using decision tree 

1)  Initially train 3-state left-right single 
Gaussian monophone CDHMM. 

2)  For tri-phones occurring frequently, 
clone its corresponding monophone 
as initial, then re-train from data 
using Baum-Welch algorithm. 

3)  For all triphones derived from the 
same monophone, building 3 
phonetic trees for each state to tie 
these states in certain way. 

4)  Keeping the state-tying structure, 
increment the number of Gaussian 
mixand in each state until the 
performance is optimal.   

Measuring Accuracy (ASR Errors) 

·  Word Accuracy 
–  In continuous ASR, not easy to count (substitution/deletion/ 

insertion errors) . 
–  Minimum Edit distance  minimum substitution + deletion + 

insertion errors 
–  Word Accuracy: 

·  String Accuracy 
–  correct recognition of all words in an utterance 

·  Semantic Accuracy 
–  correct interpretation of meaning of an utterance; take the 

correct action based on the utterance; correct recognition of 
all semantic attributes 

nsanscriptiocorrect trin    words#
 ins  del  sub 100% Accuracy  Word ++×=
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String Edit Distance: minimum errors 
   Correct:             W1 W2 W3 W4 W5 W6 W7 W8 W9 
 
Recognized:        W1 W2 W10 W5 W6 W8 W9 

j 

i 

w1 

w1 

w2  

w8 

w8 w3 w4  w5  w6 w7 w9 

w9 

w6 

w5 

w10 
insertion 

0 

deletion 

substitution 

no change 

0 

0 

1 2 

2 

2 3 

3 

9 

7 

7 

7 

8 

6 

5 

4 

3 6 5 5 5 5 4 4 4 

Assumptions: 
cost of all element 
distances d(i,j) is 
either 0 or 1 

(0) 

(1) 

(1) 

(1) 

Optimal Path 
(not unique) 

End 

Start w2 

Algorithm for Minimum Edit Distance 
begin initialize  u(), r(), I <- length[U], J <- length[R], D[0,0]=0 

 i <- 0 
 do i <- i+1 
  D[i,0] = i 
 until i = I 
 j <- 0 
 do j <- j+1 
  D[0,j] <- j 
 until j = J 
 i <- 0; j <- 0 
 do i <- i+1 
  do j <- j+1 
      D[i,j]=min{D[i-1,j]+1, D[i,j-1]+1, D[i-1,j-1]+q(u(i),r(j))} 
         (insertion) (deletion) (substitution or no change) 
  until j = J 
 until i = I 

   return D[I,J] 
end 

q(u(i),r(j)) is 1 for 
substitution and 0 
for no change 

Initialize boundaries with 
large distances 

}


} Minimum Edit 
Distance 
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Factors Determining Accuracy 

·  How words are spoken by a speaker 
–  poor articulation and mispronounced words 
–  co-articulation by running words together 

•  this supper = this upper 
–  speaker characteristics 

•  speaking rate, loudness, dialect, etc.  
·  The words themselves.. 

–  homophones: similar sounding words (blue - 
blew) 

–  Acoustic confusion 
–  ambiguity: multiple meanings (checking) 

Accuracy  (Cont’d)  
·  The Speaker Population 

•  general public, naïve or frequent users 
•  Native vs nonnative speakers 

·  The Speaking Environment 
•  Channel, microphone, ambient noise, etc. 

·  Rejection Processing 
•  Important component for building intelligent user interface 
•  Confidence measure needed for error correction, repair, 

deciding how much to confirm, partial understanding 
·  Human Factors 

•  ASR solutions are as much an art form as a science 
(sometime proper prompting is very effective)  

•  Transaction design to maximize success rate 
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Speech Recognition Difficulties 
(Robustness) 

·  Variability of sounds (e.g. words, phrases) 
–  Within a single speaker: variable length patterns, no clear 

boundaries 
–  Across speakers: accent, style, pronunciation, etc. 

·  Transducer and channel variability 
·  Environmental noise and acoustics 
·  Speaker production errors 

–  hesitations, repairs, extraneous speech 
–  variability in expressions 
–  mismatch in user expectation and system capabilities 
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Read 
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DARPA ASR Benchmark 


