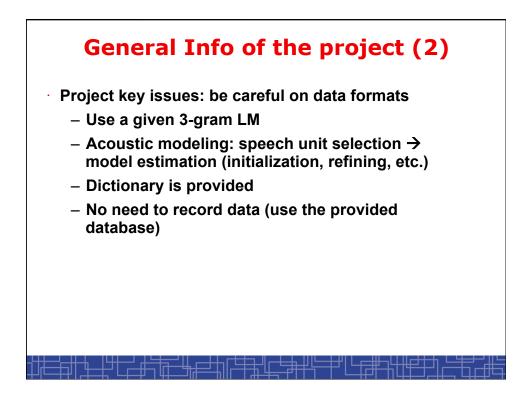
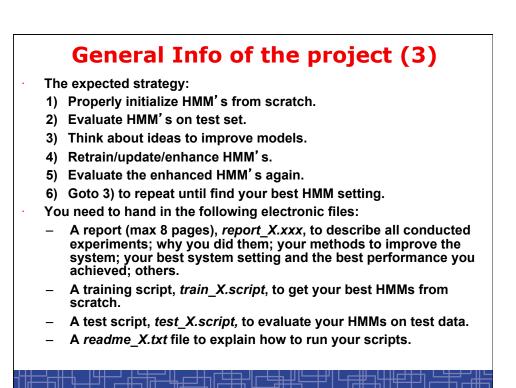
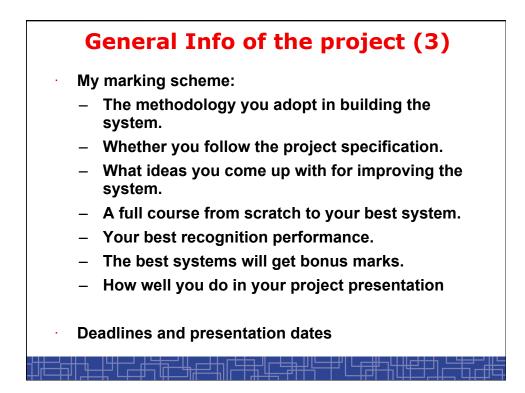
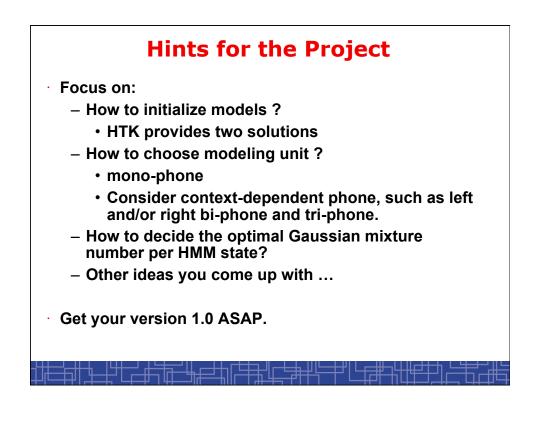


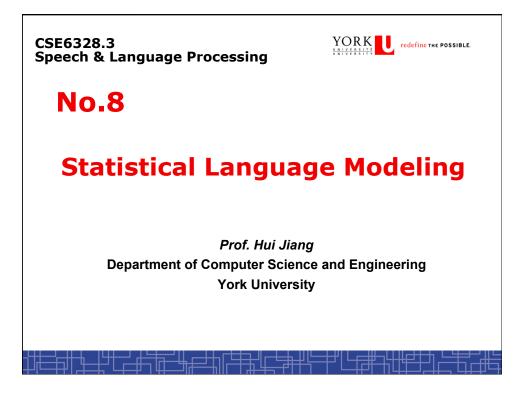
- Use HTK to build an ASR system from training data.
- Do experiments to improve your system.
- Evaluate your systems on test data and report the best.
- Requirements:
 - Use mixture Gaussian CDHMM.
 - Use mono-phone and state-tied tri-phone models
 - Can't use any test data in HMM training.
- Progressive model training procedure:
 - Simple models \rightarrow complex models
 - Single Gaussian → more mixtures
 - Mono-phone → tri-phone

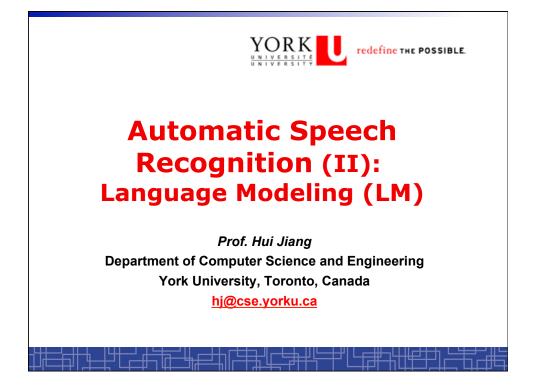


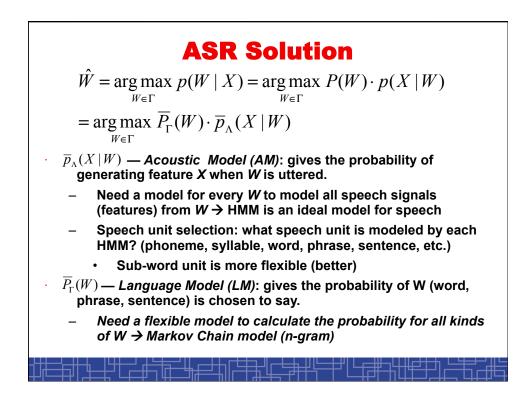


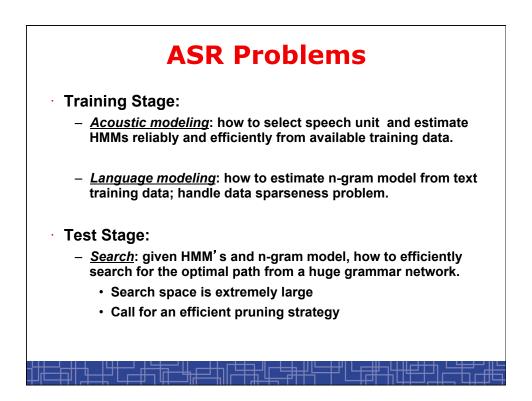


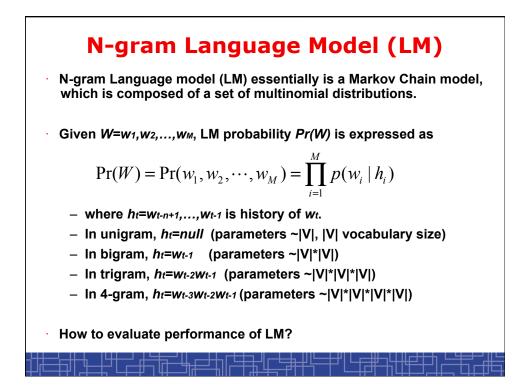


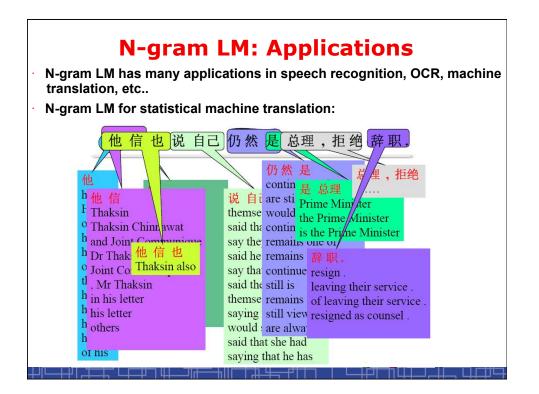


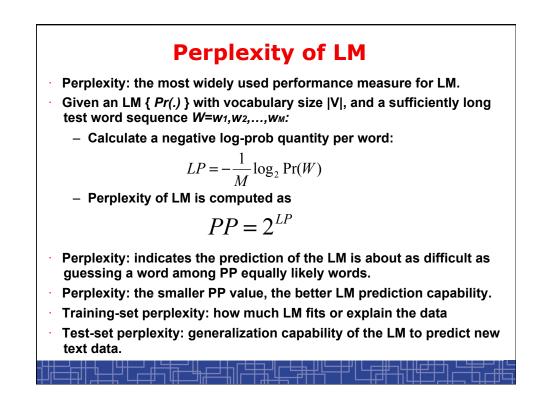


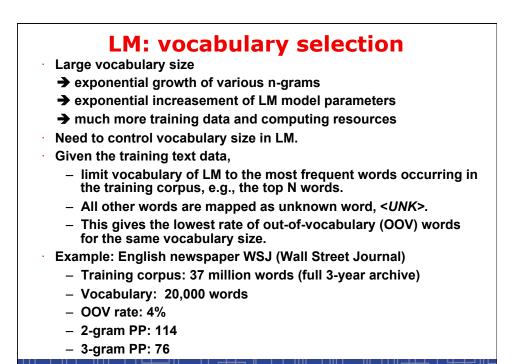


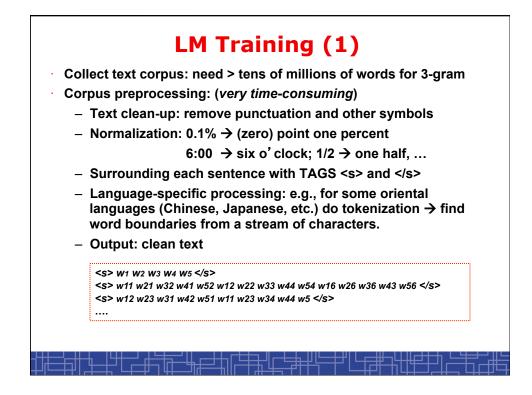




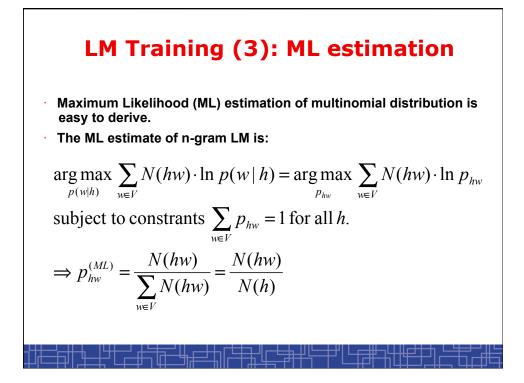












LM Training (3): MAP estimation

The natural conjugate prior of multinomial distribution is the Dirichlet distribution.

Choose Dirichlet distribution as priors:

 $p(\{p_{hw}\}) \propto \prod [p_{hw}]^{K(hw)}$

– where { K(hw)} are hyper-parameters to specify the prior.

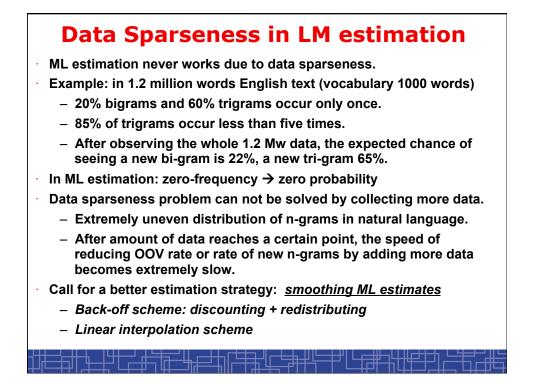
Derive posterior p.d.f. from Bayesian learning:

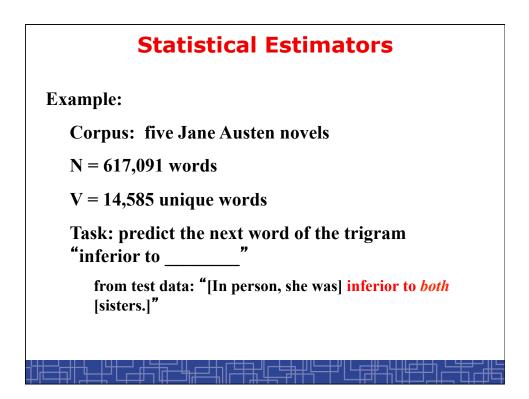
$$p(\{p_{hw}\} \mid S_h) \propto \prod_{w \in V} [p_{hw}]^{K(hw) + N(hw)}$$

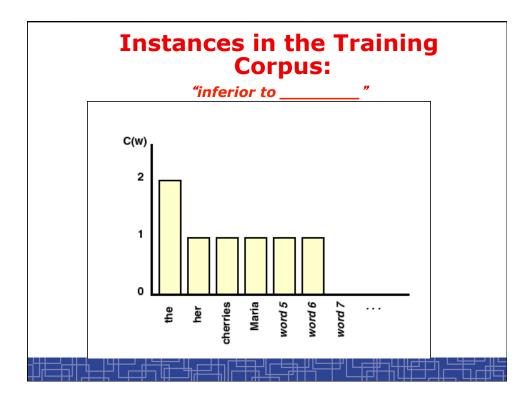
Maximization of posteriori p.d.f. → the MAP estimate:

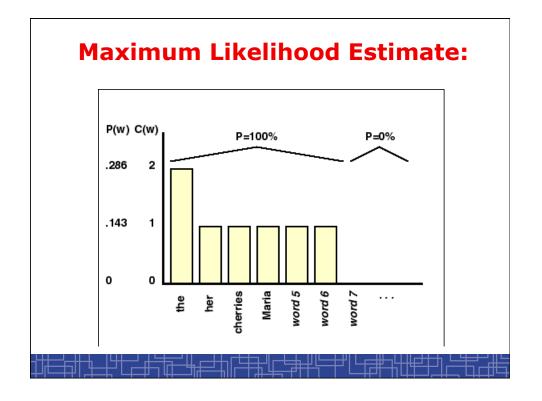
$$p_{hw}^{(MAP)} = \frac{N(hw) + K(hw)}{\sum_{v \in V} [N(hw) + K(hw)]}$$

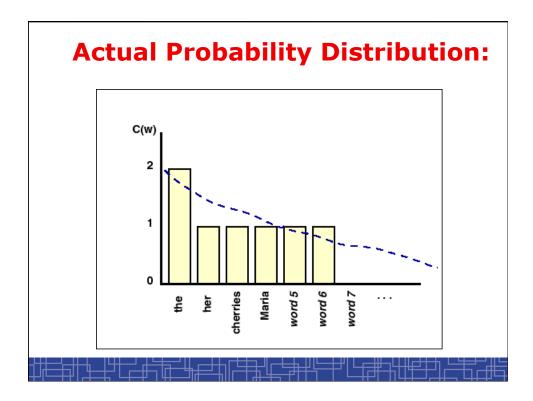
MAP estimates of n-gram LM can be used for smoothing.

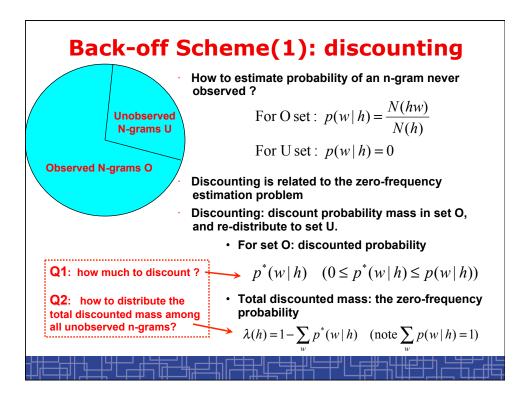


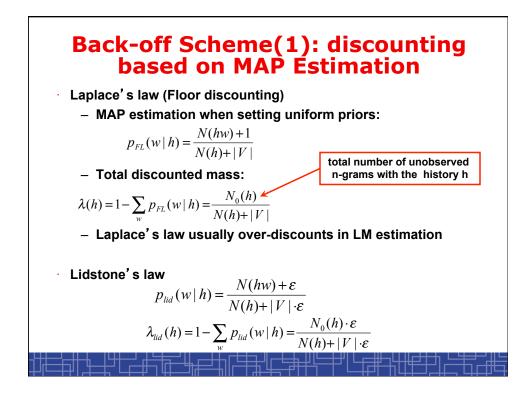












- Good-Turing discounting: discount . n-gram counts directly.
- *r*: frequency (occurring r times) .
- х. *Nr*: total number of distinct n-grams occurring exactly r times.
- Good-Turing discounting rule: .

$$r^* = (r+1) \frac{E(N_{r+1})}{E(N_r)} \quad (< r)$$

Total probability mass reserved for unseen n-grams:

$$\lambda(h) = \frac{E(N_1)}{N(h)}$$

How to calculate expectation E(Nr)?

	Nr
r	
0	212,522,973
1	138,741
2	25,413
3	10,531
4	5,997
5	3,565
6	2,486
7	1,754
8	1,342
1366	1
1917	1
2233	1
2507	1

1

1

1

Back-off Scheme(1): Good-Turing Discounting (II) How to get $E(N_r)$? r* Nr r - Directly use Nr to approximate 0.0007 0 212,522,973 the expectation. 1 0.3663 138,741 Only adjust low frequency 2 1.228 25,413 words (to say, r<=10) 3 2.122 10,531 · No need to adjust high 4 3.058 5,997 frequency words (r>10) 5 4.015 3,565 - Fit all observed (r,Nr) to a 6 4.984 2,486 function S, then use the 7 5.96 1,754 smoothed value S(r) as the 8 6.942 1,342 expectation. ••• Usually use hyperbolic 1366 1366 1 function 1917 1917

2233

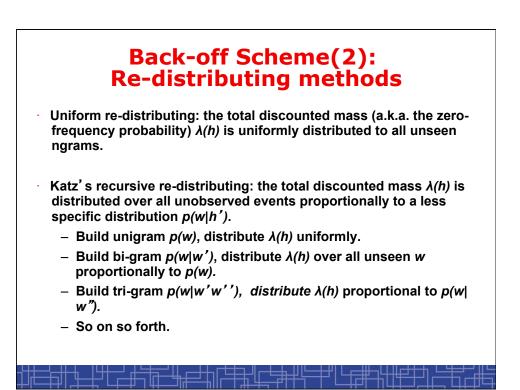
2507

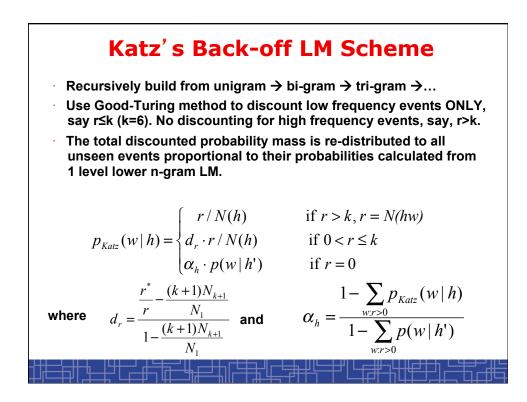
2233

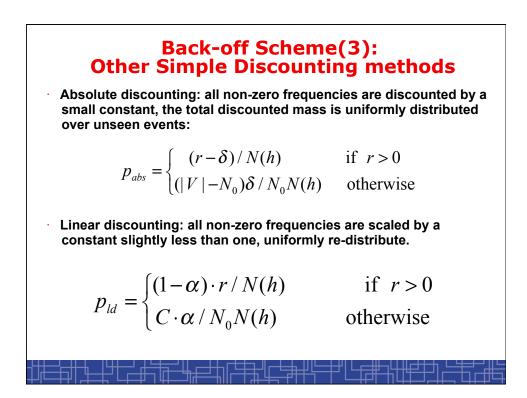
2507

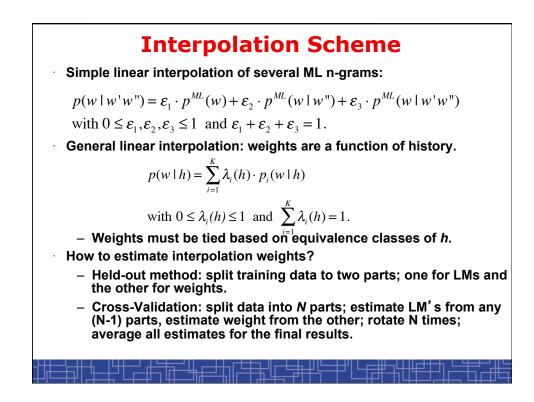
 $E(N_r) = S(r) = a \cdot b^r$ (with b < -1)

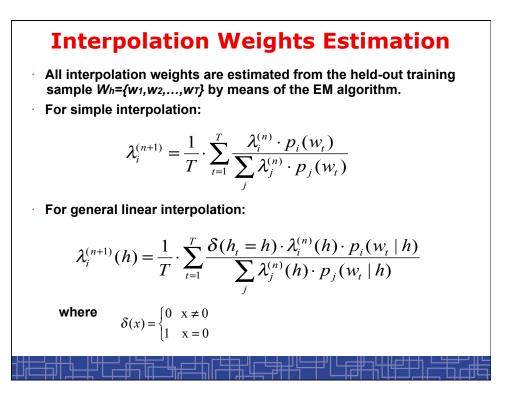
- Good-Turing estimate is *r*/N(h)*.
- Re-normalize to a proper prob dist

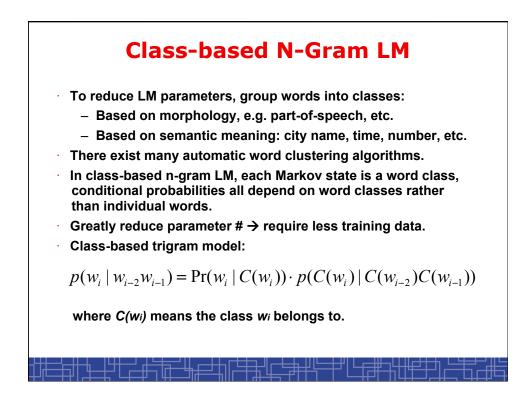


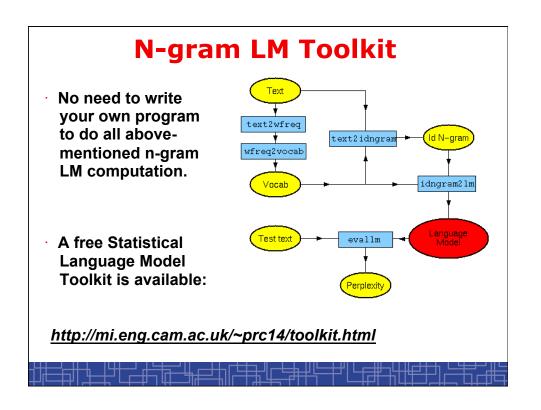


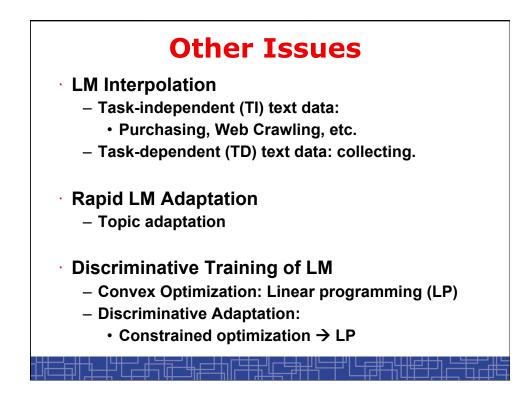


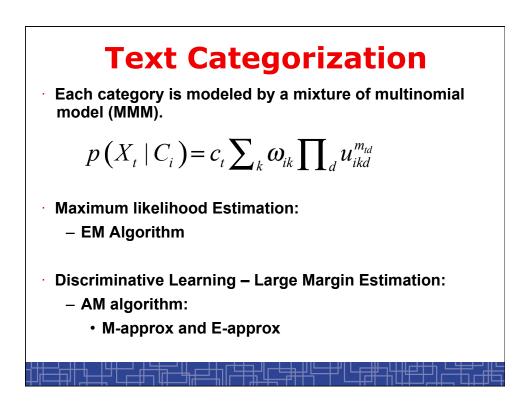












$\begin{array}{l} \textbf{Discriminative Training} \\ \textbf{S. f.} \\ \textbf{S. f.} \\ \textbf{C}_{tij} + \sum_{d} d^{u}_{ikd} \psi^{\mu}_{ikd} + d^{u}_{ik} \psi^{\mu}_{ik} - \sum_{d} d^{u}_{jk'd} \psi^{\mu}_{jk'd} - d^{u}_{jk'} \psi^{\mu}_{jk'} \succ \rho \ (t_{s}) \\ \sum_{d} e^{\psi^{\mu}_{d0}0} \psi^{\mu}_{ikd} \leq \sum_{d} e^{\psi^{\mu}_{d0}0} \psi^{\mu}_{ikd} \ (ik_{s}) \\ \psi^{\mu}_{ikd} \leq \psi^{\mu}_{ikd} + \xi \ (ikd_{s}) \\ \psi^{\mu}_{ikd} \geq \psi^{\mu}_{ikd} - \xi \ (ikd_{s}) \\ \sum_{k} e^{\psi^{\mu}_{d0}0} \psi^{\mu}_{ik} \leq \sum_{k} e^{\psi^{\mu}_{d0}0} \psi^{\mu}_{ik} \ (i_{s}) \\ \psi^{\mu}_{ikd} \geq \psi^{\mu}_{ikd} + \xi \ (ik_{s}) \\ \psi^{\mu}_{ik} \leq \psi^{\mu}_{ik} + \xi \ (ik_{s}) \\ \psi^{\mu}_{ik} \leq \psi^{\mu}_{ik} - \xi \ (ik_{s}) \\ \psi^{\mu}_{ik} \leq \psi^{\mu}_{ik} - \xi \ (ik_{s}) \\ \psi^{\mu}_{ik} \geq \psi^{\mu}_{ik} - \xi \ (ik_{s}) \\ \psi^{\mu}_{ik} = \psi^{\mu}_{ik} - \xi \ (ik$

Experimental Results: Text Classification Error Rate

• The USAA corpus:

Method	Bank-HT	Bank-ASR	
Vector-based	06.84%	09.10%	
NBCv1+DT	05.86%	09.09%	
NBCv2+DT	05.54%	09.42%	
soft margin LS MAM	05.54%	08.82%	

• The RCV1 corpus:

		Training set	Test set
Multinomial (m=1)	MLE	n/a	7.5%
Mix of multinomial (m=6)	MLE-EM	n/a	5.5%
Mix of multinomial (m=6)	LME-AM	0.71%	3.9%