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Maximum a Posteriori Estimation for Multivariate
Gaussian Mixture Observations of Markov Chains

Jean-Luc Gauvain and Chin-Hui Lee, Senior Member, IEEE

Abstract—In this paper, a framework for maximum a posteriori
(MAP) estimation of hidden Markov models (HMM) is presented.
Three key issues of MAP estimation, namely, the choice of prior
distribution family, the specification of the parameters of prior
densities, and the evaluation of the MAP estimates, are ad-
dressed. Using HMM’s with Gaussian mixture state observation
densities as an example, it is assumed that the prior densities
for the HMM parameters can be adequately represented as a
product of Dirichlet and normal-Wishart densities. The classical
maximum likelihood estimation algorithms, namely, the forward-
backward algorithm and the segmental k-means algorithm, are
expanded, and MAP estimation formulas are developed. Prior
density estimation issues are discussed for two classes of appli-
cations—parameter smoothing and model adaptation—and some
experimental results are given illustrating the practical interest of
this approach. Because of its adaptive nature, Bayesian learning is
shown to serve as a unified approach for a wide range of speech
recognition applications.

I. INTRODUCTION

STIMATION of a probabilistic function of Markov chain,

which is also called a hidden Markov model (HMM),
is usually obtained by the method of maximum likelihood
(ML) [11, 121, [23], [15], which assumes that the size of the
training data is large enough to provide robust estimates. This
paper investigates maximum a posteriori (MAP) estimation of
continuous density hidden Markov models (CDHMM’s). The
derivations given here can straightforwardly be extended to the
subcases of discrete density HMM’s and tied-mixture HMM’s.
The MAP estimate can be seen as a Bayes estimate of the vec-
tor parameter when the loss function is not specified [5]. The
MAP estimation framework provides a way of incorporating
prior information in the training process, which is particularly
useful for dealing with problems posed by sparse training
data for which the ML approach gives inaccurate estimates.
MAP estimation can be applied to two classes of applications,
namely, parameter smoothing and model adaptation, which
are both related to the problem of parameter estimation with
sparse training data.

In the following, the sample x = (z1,...,27) denotes a
given set of T observation vectors, where xy, ...,z are either
independent and identically distributed (i.i.d.) or are drawn
from a probabilistic function of a Markov chain.
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The difference between MAP and ML estimation lies in
the assumption of an appropriate prior distribution of the
parameters to be estimated. If §, which is assumed to be a
random vector taking values in the space ©, is the parameter
vector to be estimated from the sample x with probability
density function (p.d.f.) f(:|9), and if g is the prior p.d.f. of
¢, then the MAP estimate Oy ap is defined as the mode of the
posterior p.d.f. of 8 denoted as g(|x), i.e.

Omap = argmgxg(BIX) 1)
)

If @ is assumed to be fixed but unknown, then there is
no knowledge about 6, which is equivalent to assuming
a noninformative prior or an improper prior, ie., g(6) =
constant. Under such an assumption, (2) then reduces to the
familiar ML formulation.

Given the MAP formulation, three key issues remain to
be addressed: the choice of the prior distribution family, the
specification of the parameters for the prior densities, and the
evaluation of the MAP. These problems are closely related
since an appropriate choice of the prior distribution can greatly
simplify the MAP estimation process.

Similar to ML estimation, MAP estimation is relatively easy
if the family of p.d.f.’s {f(-]6),6 € ©} possesses a sufficient
statistic of fixed dimension t(x) for the parameter 0, ie.,
f(x|8) can be factored into two terms f(x|8) = h(x)k(6]t(x))
such that h(x) is independent of 6, and k(8|t(x)) is the
kernel density, which is a function of # and depends on x
only through the sufficient statistic t(x) [271, [5], [7]. In this
case, the natural solution is to choose the prior density in a
conjugate family {k(-|¢), ¢ € ¢}, which includes the kernel
density of f(:|¢). The MAP estimation is then reduced to the
evaluation of the mode of the posteriori density k(f]¢’)
k(8|o)k(6]t(x)), which is a problem that is almost identical
to the ML estimation problem of finding the mode of the kernel
density &(-|t(x)). However, among the distribution families of
interest, only exponential families have a sufficient statistic of
fixed dimension [4], [17].

When there is no sufficient statistic of a fixed dimension,
MAP estimation, like ML estimation, is a much more difficult
problem because the posterior density is not expressible in
terms of a fixed number of parameters and cannot be max-
imized easily. For both finite mixture densities and hidden
Markov models, the lack of a sufficient statistic of a fixed
dimension is due to the underlying hidden process, i.e., the
state mixture component and the state sequence of a Markov
chain for an HMM. In these cases, ML estimates are usually

= argmax f(x|6)g(6)-
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obtained using the expectation-maximization (EM) algorithm
[6], [1], [28]). For HMM parameter estimation, this algorithm
is also called the Baum—Welch algorithm. The EM algorithm
is an iterative procedure for approximating ML estimates
in the general case of models involving incomplete data. It
locally maximizes the likelihood function of the observed
(or incomplete) data. This algorithm exploits the fact that
the complete-data likelihood is simpler to maximize than
the likelihood of the incomplete data, as in the case where
the complete-data model has sufficient statistics of fixed
dimension. As noted by Dempster et al. [6], the EM algorithm
can also be applied to MAP estimation.

The remainder of this paper is organized as follows. For
HMM estimation, two types of random parameters are com-
monly used: One involves parameters that follow multinomial
densities and the other involves parameters of multivariate
Gaussian densities. In Section II, the choice of the prior density
family is addressed, and it is shown that the prior densities
for the HMM parameters can be adequately represented as a
product of Dirichlet densities and normal-Wishart densities.
Sections III and IV derive formulations for MAP estimation
of multivariate mixture Gaussian densities and for CDHMM
with mixture Gaussian state observation densities. In Section
V, the important issue of prior density estimation is discussed.
Some experimental results illustrating the practical interest of
this approach are given in Section VI, and Bayesian learning
is shown to be a unified approach for a variety of applications
including parameter smoothing and model adaptation. Finally,
our findings are summarized in Section VIL

II. CHOICES OF PRIOR DENSITIES

In this section, the choice of the prior density family is
addressed. Let x = (z1,...2z7) be a sample of T i.i.d. obser-
vations drawn from a mixture of K p-dimensional multivariate
normal densities. The joint p.d.f. is specified by the equation!

T K

Fx18) = ] 3wl (welm, m4)

t=1k=1

3

where

6:(wl,...,wK,ml,...,mK,'rl,...,rK) 4

is the parameter vector, and w;, denotes the mixture gain for
the kth mixture component subject to the constraint EkK=l WE =
1. N(z|my, ) is the kth normal density function denoted by

N(z|mp, i) |rk|1/2 exp[—%(z‘ —my)iri(z — mk)} 5)

where m;, is the p-dimensional mean vector, and r is the
p X p precision matrix.2

As stated in the Introduction, no sufficient statistic of a
fixed dimension exists for the parameter vector 4 in (4), and

'In the following, the same term f is used to denote both the joint and the
marginal p.d.f.’s since it is not likely to cause confusion.

2)r| denotes the determinant of the matrix r, and ¢ denotes the transpose
of the matrix or vector r. In the following, we will also use tr(7) to denote
the trace of the matrix r. A precision matrix is defined as the inverse of the
covariance matrix.

therefore, no joint conjugate prior density can be specified.
However, a finite mixture density can be interpreted as a
density associated with a statistical population, which is mix-
ture of K component populations with mixing proportions
(w1,...,wk). In other words, f(x|6) can be seen as a marginal
p-df. of the joint p.df. of the parameter # expressed as
the product of a multinomial density (for the sizes of the
component populations) and multivariate Gaussian densities
(for the component densities). Assume that the joint density
of the mixture gains for each mixture density is a multinomial
distribution. Then, a practical candidate to model the prior
knowledge about the mixture gain parameter vector is a
conjugate density such as the Dirichlet density [14]

K
g(wl,...,wK]ul,...,uK)mHw;;""l 6)
k=1
where vy > 0 are the parameters for the Dirichlet density. As
for the vector parameter (my,7+) of the individual Gaussian
mixture component, the joint conjugate prior density is a
normal-Wishart density [5] of the form

9(Mk T[T, ke, e, up) o |7"lc'(a"_p)/2
- 1
exp [—?k(mk — pr) T (my — uk)] exp [—gﬂ(um)]
)

where (7x, pix, a, i) are the prior density parameters such
that a > p— 1,7, > 0, i is a vector of dimension p, and
ug is a p X p positive definite matrix.

Assuming independence between the parameters of the
individual mixture components and the set of the mixture
weights, the joint prior density g(#) is the product of the prior
p.d.f.’s defined in (6) and (7), i.e.

K
9(0) = g(wr, ..., wx) [T g(ms, ).
k=1

®

It will be shown that this choice for the prior density family
can also be justified by noting that the EM algorithm can be
applied to the MAP estimation problem if the prior density
belongs to the conjugate family of the complete-data density.

III. MAP ESTIMATES FOR GAUSSIAN MIXTURE

The EM algorithm is an iterative procedure for approxi-
mating ML estimates in the context of incomplete-data cases
such as mixture density and hidden Markov model estimation
problems [2], [6], [28]. This procedure consists of maximizing
at each iteration the auxiliary function Q(6,6) defined as the
expectation of the complete-data log-likelihood log h(y|#)
given the incomplete data x = (zy,...,z7) and the current
fit 4, ie.

Q(6,6) + Ellog h(y|)|x, 6. ©)

For a mixture density, the complete-data likelihood is the
Joint likelihood of x and ¢ = (4;,... ,41) the unobserved
labels referring to the mixture components, i.e., y = (x, £).

The EM procedure derives from the facts that log f(x|§) =
Q(8,0)—H(8,6), where H(6,8) = E[log h(y|x, 6)|x, §)] and
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H(O 9) <H (0 0) and, therefore, whenever a value § satisfies
Q(6,6) > Q(6,8), then f(x|6) > F(x]6). It follows that the
same iterative procedure can be used to estimate the mode
of the posterior density by maximizing the auxiliary function
R(#,0) = Q(8.0) + log? (@) at each iteration instead of the
maximization of Q(4, 0) in conventional ML procedures [6].

For a mixture of K densities { f(|fx)}x=1,..x with mixture
weights {wg k=1, K, the auxiliary function Q takes the
following form [28]'

O f(:)6%)

logwi f(z:|0k). (10)
;;Zz p@f( (e|6r)
Let ¥(6,6) = exp R(6,0) be the function to be maxi-

mizedA. For the case of Gaussian mixture component, we have
F(z¢|8k) = N (z¢|u, 7x). Define the following notations:
SN (s |1 7
e = N (e, 7 k) an
Zl:l wlN(xt|ml,r1)

T
k=) Che (12)
t=1
T
Ty = chtxt/ck (13)
Sk = chz — T )(ze - Te) (14
Using the equality ST crl(@e — mi)tre(z, — my) =

ci(me — Tx)tre(me — T) + tr(Skre), it follows from the
definition of f(x|#) and (10) that

K
w(0.0) o g(8) [ [ witIral*/
k=1

1
X exp [—%(mk —Zp) r(me — Tk) — §tr(5'krk)} (15)

From the relations (15) and (8), it can easily be verified
that ¥(-,f) belongs to the same distribution family as g(-)
and has parameters {v}, T, it}, Ok, Uj fk=1,..., K satisfying the
following conditions:
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The family of densities defined by (8) is therefore a conjugate
family for the complete data density.

The mode of ¥(-,§), denoted (@x, 7k, 7 ) may be obtained
from the modes of the Dirichlet and normal-Wishart densities:
on = (W — 1)) Thea Wh — 1)k = pi, and 7 = (o, —
p)w'z". Thus, the EM reestimation formulas are derived in
(21)—(23), which appear at the bottom of this page.

For the Gaussian mean vectors, it can be seen that the new
parameter estimates are simply a weighted sum of the prior
parameters and the observed data. The above development
suggests when the EM algorithm can be used for MLE, a
natural prior density can be found in the conjugate family of
the complete-data density if such a conjugate family exists.
For example, in the general case of mixture densities from
exponential families, the prior will be the product of a Dirichlet
density for the mixture weights and the conjugate densities of
the mixture components.

If it is assumed that each mixture component is nondegen-
erate, ie., @ > 0, then ck1,Ck2....,CkT iS @ sequence of
T iid. random variables with a nondegenerate distribution
and lim supg_, o, Zt 1 Ckt = 00 with probability one [25]. It
follows that . converges to £7_;cx/T" with probability one
when T' — co. Applying the same reasoning to 7y, and 7, it
can be seen that the EM reestimation formulas for the MAP
and ML approaches are asymptotically similar. Thus, as long
as the initial estimates of # are identical, the EM algorithms for
MAP and ML will provide identical estimates with probability
one when T' — oo.

IV. MAP ESTIMATES FOR HMM

The development in the previous section for a mixture of
multivariate Gaussian densities can be extended to the case
of HMM with Gaussian mixture state observation densities.
For notational convenience, it is assumed that the observation
p.d.f.’s of all the states have the same number of mixture
components.

Consider an N-state HMM with parameter vector A =
(m, A, 8), where = is the initial probability vector, A is the
transition matrix, and  is the p.d.f. parameter vector composed

vy, = Uk + Ci (16) ;
) of the mixture parameters 8; = {wik, Mik, Tik pr=1,....k for
Tk = Tk T Ck A7) each state i.
&), = o + Ck (18) For a sample x = (z1,...,7r), the complete data is
; _ Tk T CrTk y = (x,s,£), where s = (sg,...,s7) is the unobserved
g = ————— (19) .
T, + Ck state sequence, and £ = (£y,...,¢r) is the sequence of
;o kCk = =3\t the unobserved mixture component labels s; € [1,N] and
up = up + Sk + pr — Tk)(ux — Zk)*. (20) P t )
k Tk + Ck( X ) I; € [1,K]. The joint p.d.f. h(-|]A) of x,s, and £ is defined
- (v = 1) + 30 oke
Yk = 5K K T @n
Y1k = 1)+ Xy Dot Che
_ Tk + Ethl CrtTt 22)
Tk + Zfzk Ckt
o up+ g cel(me — i) (e — )t + Tk — 1) (e — )"
T = . 23)

(ar —p)+ 23;1 Ckt
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as
T

h(x’ s, fl/\) = Tsg H Asy_15¢Ws, 8, f(xt‘es:h)

t=1

(24)

where 7; is the initial probability of state i, a;; is the transition
probability from state 4 to state j, and 6,5, = (44, rik) is the
parameter vector of the kth normal p.d.f. associated with state
¢. It follows that the likelihood of x has the form

T
FxIN) =D 7 > aa, o f(2elb,) 5)
s t=1

where f(z,(6;) = Zszl wigN (2¢|mx, mix), and the summa-
tion is over all possible state sequences.

If no prior knowledge is assumed about A and =, or
alternatively, if these parameters are assumed fixed and known,
the prior density G can be chosen to have the following
form: G(A) = [];9(6:), where g(6;) is defined by (8).
In the general case where MAP estimation is applied not
only to the observation density parameters but also to the
initial and transition probabilities, a Dirichlet density can be
used for the initial probability vector = and for each row
of the transition probability matrix A. This choice follows
directly from the derivation discussed in the previous section
since the complete-data likelihood satisfies h(x,s,£|)) =
h(s|A)h(x,£|s, ), where h(s|\) is the product of N + 1
multinomial densities with parameter sets {y,..., 7n}, and
{ai1,...,ain}iz1,.n. The prior density for all the HMM
parameters thus satisfies the relation

N N
G(A) x H 77 1g(6;) H a?;J—l (26)
=1 j=1

where {7, } is the set of parameters for the prior density of the
initial probabilities {7}, and {n;;} is the set of parameters
for the prior density of transition probabilities a;; defined the
same way as in (6).

In the following subsections, we examine two ways of
approximating Avap by local maximization of f(x|A)G(A) or
of f(x,s|A)G(}). These two solutions are the MAP versions
of the Baum-Welch algorithm [2] and of the segmental k-
means algorithm [26]—algorithms that were developed for
ML estimation.

A. Forward-Backward MAP Estimate

From (24), it is straightforward to show that the auxiliary
function of the EM algorithm applied to ML estimation of
A QN A) = Ellog h(y|A)|x, A] can be decomposed into a
sum of three auxiliary functions: Q,r(vr,;\),QA(A,j\) and
Qa(8, ;\) such that they can be independently maximized [15].
The three functions take the following forms:

N
Q,r(ﬂ', ;\) = z Yi0 lOg T3 (27)
=1

3Here, we use the definition prposed by Baum er al. (1], where the
observation p.d.f.’s are associated with the Markov chain states, and no symbol
is produced in state sq.

T T T
Qa(AN)=3"3"5" Pr(s-1=i,5,= | x, 1) logay;
t=1i=1j=1
(28)
N ~
= Qa,(a;, ) (29)

1

T‘.

T N K
Qo(0,3)=D"5"3" Pr(s, = 4,6, =k|x,A) logwirf (z:|0:x)
t=1i=1k=1
(30)
N R
= Qo(6:iY) Q)
=1
with
R T N
Qo (ai, A) =Y &ijelogay; (32)
t=1 j=1

T K A
gy - Wi f(me|Oir) ' ,
Qo.(6:,0) =" e SE e 5k @)

t=1 k=1
(33)

where &ijo = Pr(s;—1 = 4,8 = j|x,A) is the probability
of making a transition from state ¢ to state j at time ¢, given
that the model A generates x, and ~;; = Pr(s; = 1|x, ;\) is the
probability of being in state 7 at time ¢, given that the model A
generates X. Both probabilities can be computed at each EM
iteration using the forward-backward algorithm [2].

As for the mixture Gaussian case, estimating the mode
of the posterior density requires the maximization of
the auxiliary function R(A,)\) = Q(X\A) + log G(M).
The form chosen for G(A) in (26) permits independent
maximization of each of the following 2N + 1 parameter
sets: {7!'1, cen 77r1\/}, {ail, ey aiN}i=1,_”,N and {0;}1‘:1,_”,1\[.
The MAP auxiliary function R(), ) can thus be written as
the sum R, () + 3 Rai (i), A) + 3 Ro,(6;,)), where
each term represents the MAP auxiliary function associated
with the respective indexed parameter sets.

WeAcan recognize in (33) the same form as was seen for
Q(6,6) in (10) for the mixture Gaussian case. It follows that
if cg; in (11) is replaced by c¢iks, defined as

irN (e[ 1in, Fix)
T, GaN (ze[rha, )
which is the probability of being in state i with the mixture
component label  at time ¢ given that the model A generates
Zt, then the reestimation formulas (21)-(23) can be used to
maximize Ry, (6;,}).

It is straightforward to derive the reestimation formulas for
m and A by applying the same derivations as were used for
the mixture weights. The EM iteration for the three parameter
set A = (m, A, 6) is shown in (35)—(39), which appear at the
bottom of the next page.

For  multiple  independent

sequences
ith x.. = (2 (v) s
{xy }o=1,.v, With x,, = Ty ,...,Tp ), We must maximize

G(MIY_,; f(x,|A), where f(|A) is defined by (25). The EM
auxiliary funciton is then R(A,\) = logG(\) + 23:1

Cikt = Vit (34)

observation
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Eflog h(y.|)\)|xv, A, where h(:|A) is defined by (24). It
follows that the reestimation formulas for A and 6 still hold
if the summations over t(zz;l) are replaced by summations
over v and ¢(£Y_;)E7>,. The values 51(;'3 and +{) are then
obtained by applying the forward-backward algorithm for
each observation sequence. The reestimation formula for the

initial probabilities becomes

N Ut VR DM
L N N Vv v)*
YN - D+ T

(40)

Just like for the mixture parameter case, it can be shown
that as V — oc, the MAP reestimation formulas approach
the ML ones, exhibiting the asymptotical similarity of the two
estimates.

These reestimation equations give estimates of the HMM
parameters that correspond to a local maximum of the posterior
density. The choice of the initial estimates is therefore critical
to ensure a solution close to the global maximum and to min-
imize the number of EM iterations needed to attain the local
maximum. When using an informative prior, a natural choice
for the initial estimates is the mode of the prior density, which
represents all the available information about the parameters
when no data has been observed. The corresponding values are
simply obtained by applying the reestimation formulas with T
equal to O (i.e., without any observed data).

B. Segmental MAP Estimate

By analogy with the segmental k-means algorithm [26],
a similar optimization criterion can be adopted. Instead of
maximizing G()|x), the joint posterior density of parameter A
and state sequence s G(}, s|x), is maximized. The estimation
procedure becomes
X = argmax max G(), s|x) = argmax max F(x,s|A)G(A)
. * * 41)
where ) is refered to as the segmental MAP estimate of . As
for the segmental k-means algorithm [16], it is straightforward
to prove that starting with any estimate (™) alternate maxi-
mization over s and ) gives a sequence of estimates with non-
decreasing values of G(),s|x), i.e., GOA™+D s(M+D|x) >
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G s(M)|x) with

s(m = argmaxf(x, SIA("‘)> 42)
8

A+ = argmax f(x, s('")|/\) G(N). (43)
A

The most likely state sequence s(™) is decoded by the Viterbi
algorithm [9]. Maximization over A can also be replaced by
any hill climbing procedure over A subject to the constraint that
f(x,s('")|,\(m+1))G()\(m+1)) > f(x,s(m)|,\(m))G(,\(m)).
The EM algorithm is once again a good candidate to
perform this maximization using (™) as an initial estimate.
The EM auxiliary function is then R(A,A) = log G(A) +
Ellog h(y|A)x,s(™), A], where h(-]A) is defined by (24). It
is straightforward to show that the reestimation equations
(35)—(39) still hold with & = 8(s{™) — i)8(si™ — j) and
Vit = 6(35”” — 1), where & denotes the Kronecker delta
function.

V. PRIOR DENSITY ESTIMATION

In the previous section, it was assumed that the prior density
G()) is a member of a preassigned family of prior distributions
defined by (26). In a strictly Bayesian approach, the vector
parameter ¢ of this family of p.d.f.’s {G(:|p), ¢ € ¢} is also
assumed known, based on common or subjective knowledge
about the stochatic process. An alternate solution is to adopt
an empirical Bayes approach [29], where the prior parameters
are estimated directly from data. The estimation is then based
on the marginal distribution of the data given the estimated
prior parameters.

In fact, part of the available prior knowledge can be directly
incorporated in the model by assuming some of the parameters
to be fixed and known and/or by tying some of the parameters.
As for the prior distribution, this information will reduce
the uncertainty during the training process and increase the
robustness of the estimates. However, in contrast with the prior
distribution, such deterministic prior information by definition
cannot be changed even if a large amount of training data is
available.

Adopting the empirical Bayes approach, it is assumed
that the sequence of observations X is composed of
multiple independent sequences associated with different

< (i = 1) + vio
m = " i (35)
Yi=1(m = 1) + Xj= vio
5o (mij = 1) + Sy e
0,1] - N N T (36)
=1 (mii = 1) + ey 2 it
~ vir, — 1) + T_ C;
ik = = (vir — 1) Z;{—l k; a7
Zk:l(yik - 1) + Zk:l Zt:l Cikt
T
- ikMik + _1 CiktT
g = TikMik 2715‘_1 CiktTt %)
Tik + thl Cikt
1 ikt Yy cike(@e = Mar) (@ — k) + ik (it = Mak) (pik — 7ivin)*
Tk = (39)

(aix —p) + E'i;l Cikt
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unknown values of the HMM parameters. Let (X,A) =
[(x1, A1), (x2, A2), - - ., (%@, Ag)] be such a multiple sequence
of observations, where each pair is independent of the others,
and the A, have a common prior distribution G(-|¢). Since
the A, are not directly observed, the prior parameter estimates
must be obtained from the marginal density f(X|p), which
is defined as

f(X]p) = /A FXIAG(Alp)dA

where f(X|A) = T[, f(x,]A,) and G(Alg) = [T, G(Ale).
However, MLE based on f(X|y) appears rather difficult. To
alleviate the problem, we can choose a simpler optimization
criterion of maximizing the joint p.d.f. f(X,Alp) over A
and ¢ instead of maximizing the marginal p.d.f. of X given
¢. Starting with an initial estimate of (™), a hill-climbing
procedure is obtained by alternate maximization over A and
v, ie.

(44)

Al = argmax f(X, A](p(m)) (45)
A

@) = argmax G(A(™|y). (46)
©

Such a procedure provides a sequence of estimates with non-
decreasing values of f(X, A|¢{™)). The solution of (45) is the
MAP estimate of A based on the current prior parameter (™),
which can be obtained by applying the forward-backward
MAP reestimation formulas to each observation sequence X,.
The solution of (46) is the MLE of ¢ based on the current
values of the HMM parameters. It should be noted that this
procedure gives not only an estimate of the prior parameters
but also MAP estimates of the HMM parameters for each
independent observation sequence Xq.

Finding the solution of (46) poses two problems. First, due
to the Wishart and Dirichlet components, MLE for the density
defined by (26) is not trivial. Second, since more parameters
are needed for the prior density than for the HMM itself, there
can be a problem of overparameterization when the number
of pairs (x4, A¢) is small. One way to simplify the estimation
problem is to use moment estimates to approximate the MLE’s.
For the overparameterization problem, it is possible to reduce
the size of the prior family by adding some constraints on
the prior parameters. For example, the prior family can be
limited to the family of the kernel density of the complete-data
likelihood, i.e., the posterior density family of the complete-
data model when no prior information is available. Doing so,
it is easy to show that the following constraints on the prior
parameters hold:

“7n
(48)

Parameter tying can also be used to further reduce the size
of the prior family and is useful for parameter smoothing
purposes. Finally, another practical constraint is to impose the
prior mode to be equal to the parameters of a given HMM,
resulting in a scheme for model adaptation.

This approach can be used for two classes of applications:
parameter smoothing and adaptive learning. For parameter
smoothing, the goal is to estimate {A1,A2,...,20}. The

Vik = Tik + 1

ik = Tig + p.

abovementioned algorithm offers a direct solution to “smooth”
these different estimates by assuming a common prior density
for all the models. For adaptive learning, we observe a new
sequence of observations x, associated with the unobserved
vector parameter value A,. The required specification of the
prior parameters for finding the MAP estimate of Ag can
be obtained as a point estimate @ computed with the pro-
posed iterative algorithm. Such a training process can be
seen as the adaptation of a less specific a priori model
A = argmax,G(A|) (when no training data are available)
to more specific conditions which match well with the new
observation sequence x,. Some experimental results for these
applications are given in the next section.

V1. EXPERIMENTAL RESULTS

Bayesian learning of Gaussian densities has been widely
used for sequential learning of the mean vectors of feature-
and template-based recognizers (see, for example, Zelinski and
Class [31] and Stern and Lasry [30]). Ferretti and Scarci [81
used Bayesian estimation of mean vectors to build speaker-
specific codebooks in an HMM framework. In all these cases,
the precision parameter was assumed to be known and the prior
density limited to a Gaussian. Brown et al. [3] used Bayesian
estimation for speaker adaptation of CDHMM parameters
in a connected digit recognizer. More recently, Lee er al.
[20] investigated various traning schemes of Gaussian mean
and variance parameters using normal-gamma prior densities
for speaker adaptation. They showed that on the alpha digit
vocabulary, with only a small amount of speaker specific data
(one to three utterances of each word), the MAP estimates
gave better results than the MLE’s,

Using the theoretical developments presented in this pa-
per, Bayesian estimation has been successfully applied to
CDHMM with Gaussian mixture observation densities for four
speech recognition applications: parameter smoothing, speaker
adaptation, speaker group modeling, and corrective training.
We have previously reported experimental results for these
applications in [10]-[12], [22]. In order to demonstrate the
effectiveness of Bayesian estimation for such applications,
some results are given here. In all cases, the HMM parameters
were estimated using the segmental MAP algorithm. The
prior parameters, subject to the conditions (47) and (48),
were obtained by forcing the prior mode to be equal to the
parameters of a given HMM [10]. These constraints leave
free the parameters 7%, which can either be estimated using
the algorithm described in Section V or can be arbitrarily
fixed. For model adaptation, 7;; can be regarded as a weight
associated with the kth Gaussian of state # as shown in (35)
and (39). When this weight is large, the prior density is sharply
peaked around the values of the seed HMM parameters,
which are only slightly modified by the adaptation process.
Conversely, if 7;; is small, adaptation is fast, and the MAP
estimates depend mainly on the observed data.

The applications discussed here are parameter smoothing
and speaker adaptation. It is well known that HMM training
requires smoothing (or tying), particularly if a large number
of context-dependent (CD) phone models are used with
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limited amounts of training data. Although several solutions
have been investigated to smooth discrete HMM’s, such as
model interpolation, co-occurrence smoothing, and fuzzy VQ,
only variance smoothing has been proposed for continuous
density HMM’s. In [10] and [11], we have shown that
MAP estimation can be used to solve this problem for
CDHMM’s by tying the parameters of the prior density.
Performance improvements has been reported by tying the
prior parameters in two ways. For CD model smoothing, the
same prior density was used for all CD models corresponding
to the same phone [10], and for p.d.f. smoothing, the same
marginal prior density was used for all the components of a
given a mixture [11]. In experiments using the DARPA Naval
Resources Management (RM) [24] and the TI connected
digit corpora, MAP estimation always outperformed MLE
with error rate reductions on the order of 10 to 25%.

In the case of model adaptation, MAP estimation may
be viewed as a process for adjusting seed models to form
more specific ones based on a small amount of adaptation
data. The seed models are used to estimate the parameters
of the prior densities and to serve as an initial estimate for
the EM algorithm. Here, experimental results are presented
on speaker-adaptation as an example of model adaptation.
(Bayesian learning was also demonstrated as a scheme for sex-
dependent training in [10]-{12].) The experiments used a set of
context-independent (CI) phone models, where each model is
a left-to-right HMM with Gaussian mixture state observation
densities, with a maximum of 32 mixture components per
state. Diagonal covariance matrices are used, and the transition
probabilities are assumed fixed and known. Details of the
recognition system and the basic assumptions for acoustic
modeling of subword units can be found in [19]. As described
in [21], a 38-dimensional feature vector composed of LPC-
derived cepstrum coefficients and first- and second-order time
derivatives was computed after the data were downsampled to
8 kHz to simulate the telephone bandwidth.

In Table I, speaker adaptation using MAP estimation is com-
pared to ML training of speaker-dependent (SD) models, using
a set of 47 CI phone models. For MAP estimation, speaker-
independent (SI) and sex-dependent (M/F) seed models were
trained on the standard RM SI-109 training set consisting of
3990 utterances from 109 native American talkers (31 females
and 78 males), each providing 30 or 40 utterances. The test
material consisted of the RM FEB91-SD test data with 25
testing utterances from each of the 12 testing speakers (seven
males and five females). Results are reported using 40, 100,
and 600 utterances (or equivalently about two, five, and 30
min of speech material) of the speaker-specific data (taken
from RM SD data) for training and adaptation. The MLE
(SD) and MAP (SI) word error rates using the standard RM
word pair grammer are given in the two first rows of the
table. The MLE (SD) word error rate for 2 min of training
data is 31.5%. The SI word error rate (0 min of adaptation
data) is 13.9%, which is somewhat comparable to the MLE
result with 5 min of speaker-specific training data. Although
the MAP models are seen to outperform MLE models when
only relatively small amounts of data were used for training or
adaptation, the MAP and MLE results are comparable when all
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TABLE 1
SUMMARY OF SD, SA (SI), AND SA (M/F) RESULTS ON
FEB91-SD TEST (Results are given as word error rate (%).)

Training 0 min 2 min 5 min__ 30 min
MLE — 315 12.1 35
MAP (SI) 13.9 8.7 6.9 3.4
MAP (M/F) 11.5 1.5 6.0 35

the available training data were used. This result is consistent
with the Bayesian formulation that the MAP estimate and the
MLE are asymtotically similar as demonstrated in (35)—(39)
with T — oc. Compared with the SI resuits, the word error
reduction is 37% with 2 min of adaptation data. A larger
improvement was observed for the female speakers (51%) than
for the male speakers (22%), presumably because there are
fewer female speakers in the SI-109 training data.

Speaker adaptation can also be done using sex-dependent
seed models if the gender of the new speaker is known
or can be estimated prior to the adaptation process. In the
case of estimation, the gender-dependent model set that best
matches the gender of the new speaker is then used as the seed
model set instead of the SI seed models. Results for speaker
adaptation using sex-dependent seed models are given in the
third row of Table I. The word error rate without speaker
adaptation is 11.5%. The error rate is reduced to 7.5% with
2 min and 6.0% with 5 min of adaptation data. Comparing
the last two rows of the table, it can be secen that speaker
adaptation is more effective when sex-dependent seed models
are used. The error reduction with 2 min of training data is
35% compared with the sex-dependent model results and 46%
compared with the SI model results.

More details on experimental results using MAP estimation
for parameter smoothing and model adaptation can be found in
[101-[12], [22] including application to speaker clustering and
corrective training. MAP estimation has also has been applied
to task adaptation [22]. In this case, task-independent SI
models, which was trained from 10 000 utterances of general
English corpus [13], served as seed models for speaker and
task adaptation. Another use of MAP estimation has recently
been proposed for text-independent speaker identification [18]
using a small amount of speaker-specific training data.

VII. CONCLUSION

The theoretical framework for MAP estimation of multivari-
ate Gaussian mixture density and HMM with Gaussian mixture
state observation densities was presented. By extending the
two well-known ML estimation algorithms to MAP estima-
tion, two corresponding MAP training algorithms, namely,
the forward-backward MAP estimation and the segmental
MAP estimation, were formulated. The proposed Bayesian
estimation approach provides a framework to solve various
HMM estimation problems posed by sparse training data.
It has been applied successfully to acoustic modeling in
automatic speech recognition, where Bayesian learning serves
as a unified approach for speaker adaptation, speaker group
modeling, parameter smoothing, and corrective training. The
same framework can also be adopted for the smoothing and
adaptation of discrete and tied-mixture hidden Markov models
and N-gram stochastic language models.
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High-Performance Connected Digit Recognition
Using Maximum Mutual Information Estimation

Yves Normandin, Régis Cardin, and Renato De Mori, Senior Member, IEEE

Abstract— Hidden Markov Models (HMM?’s) are one of the
most powerful speech recognition tools available today. Even so,
the inadequacies of HMM’s as a ‘‘correct’’ modeling framework
for speech are well known. In this context, it is argued in this
paper that the maximum mutual information estimation (MMIE)
formulation for training is more appropriate than maximum
likelihood estimation (MLE) for reducing the error rate.

Corrective MMIE training is introduced. It is a very efficient
new training algorithm which uses a modified version of a discrete
reestimation formula recently proposed by Gopalakrishnan et
al. Reestimation formulas are proposed for the case of diagonal
Gaussian densities and their convergence properties are experi-
mentally demonstrated. A description of how these formulas are
integrated into our training algorithm is given. Using the MMIE
framework for training, it is shown how weighting the contri-
bution of different parameter sets in the computation of output
probabilities introduces substantial recognition improvements.

Using the TIDIGITS connected digit corpus, a large number
of experiments are performed with the ideas, techniques, and
algorithms presented in this paper. These experiments show that
MMIE systematically provides substantial error rate reductions
with respect to MLE alone and that, thanks to the new training
techniques, these results can be obtained at an acceptable compu-
tational cost. The best results obtained in our experiments were
0.29% word error rate and 0.89% string error rate on the aduit
portion of the corpus.

1. INTRODUCTION

N automatic speech recognition (ASR) systems based on

Hidden Markov Models (HMM’s), the purpose of training
is to find the HMM parameter set © which will result in the
speech decoder with the lowest possible recognition error rate.
The set © includes all transition probabilities and output distri-
bution parameters in all HMM’s used for a given task. Training
is done by maximizing some objective function R(©). There
are two important and difficult problems to consider. The first
one is to determine a meaningful objective function. This
function should be such that, whenever R(©) > R(®), then
© results in a better decoder than ©. Once a function R(©)
has been chosen, the second problem (the estimation problem)
is to find the parameter set © that maximizes it.

By far the most common HMM parameter estimation tech-
nique is maximum likelihood estimation (MLE) [1]. Recently,
a different type of estimation, called maximum mutual infor-
mation estimation (MMIE) has been proposed [2]. There have
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been attempts at empirically justifying the use of MMIE with
simple and well-controlled experiments. Some of them [31,
[4] demonstrate that, for certain types of estimation problems,
MMIE will converge to the optimal decoder even if incorrect
modeling assumptions are made, while MLE will not. These
experiments thus tend to show that MMIE is more robust than
MLE when modeling assumptions are not correct. The fact
that most of HMM’s modeling assumptions about speech are
incorrect could be an argument in favor of MMIE. In some
cases, however, it is also possible that neither MMIE nor MLE
will converge to the optimal decoder, but another type of
estimator will.

It is not clear how these cases relate to speech recognition
problems. In general, optimization algorithms will not con-
verge to the global optimum and it is probably not possible
to get an HMM-based optimal decoder for speech recognition.
Thus the advantage of using MMIE for HMM-based ASR’s
should be assessed by experimentation. Many results reported
in the literature [2], [4]-[6] tend to demonstrate MMIE’s
usefulness, but not conclusively.

We will show in this paper that, at least for the con-
nected digit task on the TIDIGITS corpus [7], MMIE leads
to significant recognition improvements with discrete and
semicontinuous HMM’s (SCHMM’s). In a connected digit
recognition experiment using one discrete model per digit, the
string error rate was reduced from 1.92% to 1.48% by using
MMIE after our standard MLE training. Further improvements
(0.89% string error rate with two models per word) were
obtained by using a new MMIE algorithm especially conceived
for SCHMM’s.

II. RELATION BETWEEN MLE AND MMIE

We assume that the result of a speaker pronouncing a
word sequence (or message) W is an acoustic observation
sequence y = Y, Yo, Yy - Typically, y is the result
of a frame-based analysis pertyormed on the speech signal
produced by the speaker, where y, is the parameter vector
extracted from the lth frame. Let us assume that an HMM-
type model can be built corresponding to any possible word
sequence in the task, and let my, be the model corresponding
to the word sequence w. This model allows the computation
of Po(y|my), the probability that the model m,, produced
y. Generally, Po(y|m,,) is intended as an ‘‘estimate’’ of
the probability P(y|w) that the pronunciation of the word
sequence w resulted in y. The reason for this is that the speech
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