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Abstract

Spam is information crafted to be delivered to a large number of recip-
ients, in spite of their wishes. A spam filter is an automated tool to
recognize spam so as to prevent its delivery. The purposes of spam and
spam filters are diametrically opposed: spam is effective if it evades fil-
ters, while a filter is effective if it recognizes spam. The circular nature
of these definitions, along with their appeal to the intent of sender and
recipient make them difficult to formalize. A typical email user has
a working definition no more formal than “I know it when I see it.”
Yet, current spam filters are remarkably effective, more effective than
might be expected given the level of uncertainty and debate over a
formal definition of spam, more effective than might be expected given
the state-of-the-art information retrieval and machine learning methods
for seemingly similar problems. But are they effective enough? Which
are better? How might they be improved? Will their effectiveness be
compromised by more cleverly crafted spam?

We survey current and proposed spam filtering techniques with par-
ticular emphasis on how well they work. Our primary focus is spam
filtering in email; Similarities and differences with spam filtering in
other communication and storage media — such as instant messaging



and the Web — are addressed peripherally. In doing so we examine the
definition of spam, the user’s information requirements and the role
of the spam filter as one component of a large and complex informa-
tion universe. Well-known methods are detailed sufficiently to make
the exposition self-contained, however, the focus is on considerations
unique to spam. Comparisons, wherever possible, use common evalua-
tion measures, and control for differences in experimental setup. Such
comparisons are not easy, as benchmarks, measures, and methods for
evaluating spam filters are still evolving. We survey these efforts, their
results and their limitations. In spite of recent advances in evaluation
methodology, many uncertainties (including widely held but unsubstan-
tiated beliefs) remain as to the effectiveness of spam filtering techniques
and as to the validity of spam filter evaluation methods. We outline sev-
eral uncertainties and propose experimental methods to address them.
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Introduction

The Spam Track at the Text Retrieval Conference (TREC) defines
email spam as

“Unsolicited, unwanted email that was sent indiscrimi-
nately, directly or indirectly, by a sender having no cur-
rent relationship with the recipient.” [40]

Although much of the history of spam is folklore, it is apparent that
spam was prevalent in instant messaging (Internet Relay Chat, or
IRC) and bulletin boards (Usenet, commonly dubbed newsgroups)
prior to the widespread use of email. Spam countermeasures are as
old as spam, having progressed from ad hoc intervention by adminis-
trators through simple hand-crafted rules through automatic methods
based on techniques from information retrieval and machine learning,
as well as new methods specific to spam. Spam has evolved so as to
defeat countermeasures; countermeasures have evolved so as to thwart
evasion.

We generalize the TREC definition of spam to capture the essential
adversarial nature of spam and spam abatement.
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Spam: unwanted communication intended to be deliv-
ered to an indiscriminate target, directly or indirectly,
notwithstanding measures to prevent its delivery.
Spam filter: an automated technique to identify spam
for the purpose of preventing its delivery.

Applying these definitions requires the adjudication of subjective terms
like intent and purpose. Furthermore, any evaluation of spam filtering
techniques must consider their performance within the context of how
well they fulfill their intended purpose while avoiding undesirable conse-
quences. It is tempting to conclude that scientific spam filter evaluation
is therefore impossible, and that the definition of spam or the choice
of one filter over another is merely a matter of taste. Or to conclude
that the subjective aspects can be “defined away” thus reducing spam
filter evaluation to a simple mechanical process. We believe that both
conclusions are specious, and that sound quantitative evaluation can
and must be applied to the problem of spam filtering.

While this survey confines itself to email spam, we note that the defi-
nitions above apply to any number of communication media, including
text and voice messages [31, 45, 84], social networks [206], and blog
comments [37, 123]. It applies also to web spam, which uses a search
engine as its delivery mechanism [187, 188].

1.1 The Purpose of Spam

The motivation behind spam is to have information delivered to the
recipient that contains a payload such as advertising for a (likely
worthless, illegal, or non-existent) product, bait for a fraud scheme,
promotion of a cause, or computer malware designed to hijack the recip-
ient’s computer. Because it is so cheap to send information, only a very
small fraction of targeted recipients — perhaps one in ten thousand or
fewer — need to receive and respond to the payload for spam to be
profitable to its sender [117].

A decade ago (circa 1997), the mechanism, payload, and purpose of
spam were quite transparent. The majority of spam was sent by “cot-
tage industry” spammers who merely abused social norms to promote
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[ (guest) TONER - SeaMonkey [=1E3]
L

ID

Subject: (guest) TONER

From: 29284096(@prodigy.com
Date: Wed. 15 Oct 97 03:06:40 EST
To: friend/@ piblic.com

BENCHMARE PRINT SUFFLY
1091 Eedstone Lane
Atlanta A 30338
(T70) 399-0953
*%*NEW ANNOUNCEMENT****
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Fig. 1.1 Marketing spam.

their wares (Figure 1.1). Fraud bait consisted of clumsily written
“Nigerian scams” (Figure 1.2) imploring one to send bank transit infor-
mation so as to receive several MILLION DOLLARS from an aide to
some recently deposed leader. Cause promotion took the form of obvi-
ous chain letters (Figure 1.3), while computer viruses were transmitted
as attached executable files (Figure 1.4). Yet enough people received
and responded to these messages to make them lucrative, while their
volume expanded to become a substantial inconvenience even to those
not gullible enough to respond.

At the same time, spamming has become more specialized and
sophisticated, with better hidden payloads and more nefarious pur-
poses. Today, cottage industry spam has been overwhelmed by spam
sent in support of organized criminal activity, ranging from traffic in
illegal goods and services through stock market fraud, wire fraud, iden-
tity theft, and computer hijacking [140, 178]. Computer viruses are no
longer the work of simple vandals, they are crafted to hijack computers
so as to aid in identity theft and, of course, the perpetration of more
spam!
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FE URGENT ASSISTANCE - SeaMonkey
bbb

Subject: URGENT ASSISTANCE

From: "MR. P. C. NICOLE" <dr ej@mail com=>
Date: Sat, 24 Aug 2002 16:56:56

To: cormack(@wheat uwaterloo.ca

Good day, I am EDWARD MOLETE JR. the =son of Mr. Luke

Radebe MULETE from Zimbabwe. I am sorry this mail

Will Surprise you, though we do not know, I got yvour contact
Through South African Chamber of Commerce.

During the current war against white farmers in
Zimbabwe and the support of President Robert Mugabe to
Claim all the white owned farms in our country to gain
Favor for re-election. All white farmers were asked to
Surrender their farms to the government for
Re-distribution and infact ta his political party
Members and my father though black, was the treasury
Cf the farmers assaciation and a strong hember of an

07 ) oo S Ades: |

Fig. 1.2 Nigerian spam.

[B MLM for Dummies! No Selling! No Hassle! A No Brainer! - SeaMonkey

a
Subject: MLM for Dummies! No Selling! No Hassle! A No Brainer! =
From: 555cashi@ 1stfamily.com
Date: Sun. 19 Oct 1997 03:23:12 -0400 (EDT)
To: betterlifel @savetrees.com
For those of us who HATE selling and who don't know
a down line from a clothes line
Greetings;
Here i= a note to me from my friend [S5teve] in Canada who wrote,

"Dear Friend; Flease don't make the same mistake I made! I THREW this
letter [the program] away at least twice before I took the time to
read it. When I did, it dawned on me that this could work! Take a look
for yourself!"™ A copy of the letter Steve received is below, =signed by
Christopher Erickson.

Just think, "Are you living by chance rather than by plan?" If =0, s
[ 02 & [] oA oo S adbick

Fig. 1.3 Chain letter spam.
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[ sale of Your Home - SeaMonkey |Z||E|[5__<|

Subject: Sale of Your Home
From: "R_ Blake Hull" <hull @ionline net=
Date: Thu, 3 Jun 1999 10:47:15 -0400

Happy99.exe

QG2 S E) 63 oone Sl e Adbeck

Fig. 1.4 Virus spam.

Spam, to meet its purpose, must necessarily have a payload which
is delivered and acted upon! in the intended manner. Spam abatement
techniques are effective to the extent that they prevent delivery, prevent
action, or substitute some other action that acts as a disincentive.?
Spam filters, by identifying spam, may be used in support of any of
these techniques. At the same time, the necessary existence of a payload
may aid the filter in its purpose of identifying spam.

1.2 Spam Characteristics

Spam in all media commonly share a number of characteristics that
derive from our definition and discussion of the purpose of spam.

I The target need not be a person; a computer may receive and act upon the spam, serving
its purpose just as well.
2Such as arresting the spammer.
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1.2.1 Unwanted

It seems obvious that spam messages are unwanted, at least by the vast
majority of recipients. Yet some people respond positively to spam, as
evidenced by the fact that spam campaigns work [71]. Some of these
individuals no doubt come to regret having responded, thus calling
into question whether they indeed wanted to receive the spam in the
first place. Some messages — such as those trafficking in illegal goods
and services — may be wanted by specific individuals, but classed as
unwanted by society at large. For most messages there is broad consen-
sus as to whether or not the message is wanted, for a substantial minor-
ity (perhaps as high as 3% [168, 199]) there is significant disagreement
and therefore some doubt as to whether the message is spam or not.

1.2.2 Indiscriminate

Spam is transmitted outside of any reasonable relationship? or prospec-
tive relationship between the sender and the receiver. In general, it is
more cost effective for the spammer to send more spam than to be
selective as to its target. An unwanted message targeting a specific
individual, even if it promotes dubious products or causes or contains
fraud bait or a virus, does not meet our definition of spam.

A message that is automatically or semi-automatically tailored to
its target is nonetheless indiscriminate. For example, a spammer may
harvest the name of the person owning a particular email address and
include that name in the salutation of the message. Or a spammer may
do more sophisticated data mining and sign the message with the name
and email address of a colleague or collaborator, and may include in
the text subjects of interest to the target. The purpose of such tailoring
is, of course, to disguise the indiscriminate targeting of the message.

1.2.3 Disingenuous

Because spam is unwanted and indiscriminate, it must disguise itself
to optimize the chance that its payload will be delivered and acted

3We have dropped the term wunsolicited used in TREC and earlier definitions of spam,
because not all unsolicited email is spam, and that which is captured by our notion of
indiscriminate. Solicited email, on the other hand, is clearly not indiscriminate.
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upon. The possible methods of disguise are practically unlimited and
cannot be enumerated in this introduction (cf. [27, 67, 75]). Some of
the most straightforward approaches are to use plausible subject and
sender data, as well as subject material that appears to be legitimate.
It is common, for example, to receive a message that appears to be a
comment from a colleague pertaining to a recent news headline. Even
messages with random names; for example a wire transfer from John
to Judy, will appear legitimate to some fraction of its recipients. Mes-
sages purporting to contain the latest security patch from Microsoft
will similarly be mistaken for legitimate by some fraction of recipients.

Spam must also disguise itself to appear legitimate to spam filters.
Word misspelling or obfuscation, embedding messages in noisy images,
and sending messages from newly hijacked computers, are spam charac-
teristics designed to fool spam filters. Yet humans — or filters employ-
ing different techniques — can often spot these characteristics as unique
to spam.

1.2.4 Payload Bearing

The payload of a spam message may be obvious or hidden; in either
case spam abatement may be enhanced by identifying the payload and
the mechanism by which actions triggered by it profit the spammer.
Obvious payloads include product names, political mantras, web links,
telephone numbers, and the like. These may be in plain text, or they
may be obfuscated so as to be readable by the human but appear benign
to the computer. Or they may be obfuscated so as to appear benign to
the human but trigger some malicious computer action.

The payload might consist of an obscure word or phrase like
“gouranga” or “platypus race” in the hope that the recipient will be
curious and perform a web search and be delivered to the spammer’s
web page or, more likely, a paid advertisement for the spammer’s web
page. Another form of indirect payload delivery is backscatter: The
spam message is sent to a non-existent user on a real mail server, with
the (forged) return address of a real user. The mail server sends an
“unable to deliver” message to the (forged) return address, attaching
and thus delivering the spam payload. In this scenario we consider
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both the original message (to the non-existent user) and the “unable
to deliver” message to be spam, even though the latter is transmitted
by a legitimate sender.

The payload might be the message itself. The mere fact that the
message is not rejected by the mail server may provide information
to the spammer as to the validity of the recipient’s address and the
nature of any deployed spam filter. Or if the filter employs a machine
learning technique, the message may be designed to poison the filter
[70, 72, 191], compromising its ability to detect future spam messages.

1.3 Spam Consequences

The transmission of spam — whether or not its payload is delivered
and acted upon — has several negative consequences.

1.3.1 Direct Consequences

Spam provides an unregulated communication channel which can be
used to defraud targets outright, to sell shoddy goods, to install viruses,
and so on. These consequences are largely, but not exclusively, borne by
the victims. For example, the victim’s computer may be used in further
spamming or to launch a cyber attack. Similarly, the victim’s identity
may be stolen and used in criminal activity against other targets.

1.3.2 Network Resource Consumption

The vast majority of email traffic today is spam. This traffic consumes
bandwidth and storage, increasing the risk of untimely delivery or out-
right loss of messages. For example, during the Sobig virus outbreak of
2003, the author’s spam filter correctly identified the infected messages
as spam and placed them in a quarantine folder. However, the total
volume of such messages exceeded 5 GB per day, quickly exhausting
all available disk space resulting in non-delivery of legitimate messages.

1.3.3 Human Resource Consumption

It is an unpleasant experience and a waste of time to sort through
an inbox full of spam. This process necessarily interferes with the
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timeliness of email because the recipient is otherwise occupied sorting
through spam. Furthermore, the frequent arrival of spam may preclude
the use of email arrival alerts, imposing a regimen of batch rather than
on-arrival email reading, further compromising timeliness.

Over and above the wasted time of routinely sifting through spam,
some spam messages may consume extraordinary time and resources
if they appear legitimate and cannot be dismissed based on the sum-
mary information presented by the mail reader’s user interface. More
importantly, legitimate email messages may be overlooked or dismissed
as spam, with the consequence that the message is missed.

A spam filter may mitigate any or all of the problems associated
with human resource consumption, potentially reducing effort while
also enhancing timeliness and diminishing the chance of failing to read
a legitimate message.

1.3.4 Lost Email

Sections 1.3.2 and 1.3.3 illustrate situations in which spam may cause
legitimate email to be lost or overlooked. Spam abatement techniques
may, of course, also cause legitimate email to be lost. More gener-
ally, spam brings the use of email into disrepute and therefore discour-
ages its use. Users may refuse to divulge their email addresses or may
obfuscate them in ways that inhibit the use of email as a medium to
contact them.

In evaluating the consequences of email loss (or potential loss), one
must consider the probability of loss, the importance and time critical-
ity of the information, and the likelihood of receiving the information,
or noticing its absence, via another medium. These consequences vary
from message to message, and must be considered carefully in evalu-
ating the effectiveness of any approach to spam abatement, including
human sorting.

1.4 The Spam Ecosystem

Spam and spam filters are components of a complex interdependent
system of social and technical structures. Many spam abatement pro-
posals seek to alter the balance within the system so as to render
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spam impractical or unprofitable. Two anonymous whimsical articles
[61, 1] illustrate the difficulties that arise with naive efforts to find
the Final Ultimate Solution to the Spam Problem (FUSSP). Crocker
[43] details the social issues and challenges in effecting infrastructure-
based solutions such as protocol changes and sender authentication.
Legislation, prosecution and civil suits have been directed at spam-
mers [101, 124], however, the international and underground nature of
many spam operations makes them difficult to target. Spammers and
legitimate advertisers have taken action against spam abatement out-
fits [119]. Vigilante actions have been initiated against spammers, and
spammers have reacted in kind with sabotage and extortion [103]. Eco-
nomic and technical measures have been proposed to undermine the
profitability of spam [89, 138].

A detailed critique of system-wide approaches to spam abatement is
beyond the scope of this survey, however, it is apparent that no FUSSP
has yet been found nor, we daresay, is likely to be found in the near
future. And even if the email spam problem were to be solved, it is
not obvious that the solution would apply to spam in other media. The
general problem of adversarial information filtering [44] — of which
spam filtering is the prime example — is likely to be of interest for
some time to come.

We confine our attention to this particular problem — identifying
spam — while taking note of the fact that the deployment of spam
filters will affect the spam ecosystem, depending on the nature of their
deployment. The most obvious impact of spam filtering is the emer-
gence of technical countermeasures in spam; it is commonly held that
filtering methods become obsolete as quickly as they are invented. Legal
retaliation is also a possibility: Spammers or advertisers or recipients
may sue for damages due to the non-delivery of messages. Spam fil-
tering is itself a big business, a tremendous amount of money rests on
our perception of which spam methods work best, so the self-interest
of vendors may be at odds with objective evaluation. And filter market
share will itself influence the design of spam.

In general, we shall consider the marginal or incremental effects of
spam filter deployment, and mention in passing its potential role in
revolutionary change.
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1.5 Spam Filter Inputs and Outputs

We have defined a spam filter to be an automated technique to identify
spam. A spam filter with perfect knowledge might base its decision on
the content of the message, characteristics of the sender and the target,
knowledge as to whether the target or others consider similar messages
to be spam, or the sender to be a spammer, and so on. But perfect
knowledge does not exist and it is therefore necessary to constrain
the filter to use well defined information sources such as the content
of the message itself, hand-crafted rules either embedded in the filter
or acquired from an external source, or statistical information derived
from feedback to the filter or from external repositories compiled by
third parties.

The desired result from a spam filter is some indication of whether
or not a message is spam. The simplest result is a binary categoriza-
tion — spam or non-spam — which may be acted upon in various ways
by the user or by the system. We call a filter that returns such a binary
categorization a hard classifier. More commonly, the filter is required to
give some indication of how likely it considers the message to be spam,
either on a continuous scale (e.g., 1 = sure spam; 0 = sure non-spam)
or on an ordinal categorical scale (e.g., sure spam, likely spam, unsure,
likely non-spam, sure non-spam). We call such a filter a soft classifier.
Many filters are internally soft classifiers, but compare the soft classifi-
cation result to a sensitivity threshold ¢ yielding a hard classifier. Users
may be able to adjust this sensitivity threshold according to the rela-
tive importance they ascribe to correctly classifying spam vs. correctly
classifying non-spam (see Section 1.7).

A filter may also be called upon to justify its decision; for example,
by highlighting the features upon which it bases is classification. The
filter may also classify messages into different genres of spam and good
mail (cf. [42]). For example, spam might be advertising, phishing or a
Nigerian scam, while good email might be a personal correspondence, a
news digest or advertising. These genres may be important in justifying
the spam/non-spam classification of a message, as well in assessing
its impact (e.g., does the user really care much about the distinction
between spam and non-spam advertising?).
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1.5.1 Typical Email Spam Filter Deployment

Figure 1.5 outlines the typical use of an email spam filter from the per-
spective of a single user. Incoming messages are processed by the filter
one at a time and classified as ham (a widely used colloquial term for
non-spam) or spam. Ham is directed to the user’s inbox which is read
regularly. Spam is directed to a quarantine file which is irregularly (or

Incoming Mail External

Resources

\
Filter > Memory | ¢—

A
Inbox ; Quarantine
Triage i i Search

e

N N
Good
Email
Misclassified
Good Email
VN
Read Email

Misclassified Spam

Fig. 1.5 Spam filter usage.



1.5 Spam Filter Inputs and Outputs 347

never) read but may be searched in an attempt to find ham messages
which the filter has misclassified. If the user discovers filter errors —
either spam in the inbox or ham in the quarantine — he or she may
report these errors to the filter, particularly if doing so is easy and he
or she feels that doing so will improve filter performance. In classifying
a message, the filter employs the content of the message, its built-in
knowledge and algorithms, and also, perhaps, its memory of previous
messages, feedback from the user, and external resources such as black-
lists [133] or reports from other users, spam filters, or mail servers. The
filter may run on the user’s computer, or may run on a server where it
performs the same service for many users.

1.5.2 Alternative Deployment Scenarios

The filter diagrammed in Figure 1.5 is on-line in that it processes one
message at a time, classifying each in turn before examining the next.
Furthermore, it is passive in that it makes use only of information at
hand when the message is examined. Variants of this deployment are
possible, only some of which have been systematically investigated:

e Batch filtering, in which several messages are presented to the
filter at once for classification. This method of deployment
is atypical in that delivery of messages must necessarily be
delayed to form a batch. Nevertheless, it is conceivable that
filters could make use of information contained in the batch
to classify its members more accurately than on-line.

® Batch training, in which messages may be classified on-
line, but the classifier’s memory is updated only periodically.
Batch training is common for classifiers that involve much
computation, or human intervention, in harnessing new infor-
mation about spam.

e Just-in-time filtering, in which the classification of mes-
sages is driven by client demand. In this deployment a filter
would defer classification until the client opened his or her
mail client, sorting the messages in real-time into inbox and
quarantine.
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® Deferred or tentative classification, in which the classification
of messages by the filter is uncertain, and either delivery of
the message is withheld or the message is tentatively clas-
sified as ham or spam. As new information is gleaned, the
classification of the message may be revised and, if so, it is
delivered or moved to the appropriate file.

® Receiver engagement, in which the filter probes the recipi-
ent (or an administrator representing the recipient) to glean
more information as a basis for classification. Active learn-
ing may occur in real-time (i.e., the information is gathered
during classification) or in conjunction with deferred or ten-
tative classification. An example of real-time active learning
might be a user interface that solicits human adjudication
from the user as part of the mail reading process. A more
passive example is the use of an “unsure” folder into which
messages are placed with the expectation that the user will
adjudicate the messages and communicate the result to the
filter.

® Sender engagement, in which the filter probes the sender
or the sender’s machine for more information. Examples are
challenge-response systems and greylisting. These filters may
have a profound effect on the ecosystem as they, through their
probes, transmit information back to the sender. Further-
more, they introduce delays and risks of non-delivery that
are difficult to assess [106]. It may be argued that these tech-
niques which engage the sender do not fit our notion of “fil-
ter.” Nevertheless, they are commonly deployed in place of,
or in conjunction with, filters and so their effects must be
considered.

e (Collaborative filtering, in which the filter’s result is used not
only to classify messages on behalf of the user, but to pro-
vide information to other filters operating on behalf of other
users. The motivation for collaborative filtering is that spam
is sent in bulk, as is much hard-to-classify good email, so
many other users are likely to receive the same or similar
messages. Shared knowledge among the filters promises to
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make such spam easier to detect. Potential pitfalls include
risks to privacy and susceptibility to manipulation by mali-
cious participants.

® Social network filtering, in which the sender and recipient’s
communication behavior are examined for evidence that par-
ticular messages might be spam.

1.6 Spam Filter Evaluation

Scientific evaluation, critical to any investigation of spam filters,
addresses fundamental questions:

® [s spam filtering a viable tool for spam abatement?
What are the risks, costs, and benefits of filter use?
Which filtering techniques work best?

How well do they work?

Why do they work?

How may they be improved?

The vast breadth of the spam ecosystem and possible abatement tech-
niques render impossible the direct measurement of these quantities;
there are simply too many parameters for any single evaluation or
experiment to measure all their effects at once. Instead, we make var-
ious simplifying assumptions which hold many of the parameters con-
stant, and conduct an experiment to measure a quantity of interest
subject to those assumptions. Such experiments yield valuable insight,
particularly if the assumptions are reasonable and the quantities mea-
sured truly illuminate the question under investigation. The validity of
an experiment may be considered to have two aspects: internal valid-
ity and external validity or generalizability. Internal validity concerns
the veracity of the experimental results under the test conditions and
stated assumptions; external validity concerns the generalizability of
these results to other situations where the stated assumptions, or hid-
den assumptions, may or may not hold. Establishing internal validity
is largely a matter of good experimental design; establishing exter-
nal validity involves analysis and repeated experiments using different
assumptions and designs.
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It is all too easy to fix on one experimental design and set of test
conditions and to lose sight of the overall question being posed. It is
similarly all too easy to dismiss the results a particular experiment due
to the limitations inherent in its assumptions. For example, filters are
commonly evaluated using tenfold cross validation [95], which assumes
that the characteristics of spam are invariant over time. It would be
wrong to conclude, without evidence, that the results of tenfold cross
validation would be the same under a more realistic assumption. It
would be equally wrong to dismiss out of hand the results of experi-
ments using this method, to do so would entail dismissal of all scien-
tific evidence, as there is no experiment without limiting assumptions.
We would be left with only testimonials, or our own uncontrolled and
unrepeatable observations, to judge the efficacy of various techniques.
Instead, it is appropriate to identify assumptions that limit the gener-
alizability of current results, and to conduct experiments to measure
their effect.

The key to evaluation is to conduct experiments that glean the
most informative results possible with reasonable effort, at reasonable
cost, in a reasonable time frame. Simple assumptions — such as the
assumption that the characteristics of spam are time-invariant — yield
simple experiments whose internal validity is easy to establish. Many
such experiments may reasonably be conducted to explore the breadth
of solutions and deployment scenarios. Further experiments, with dif-
ferent simple assumptions, help to establish the external validity of the
results. These experiments serve to identify the parameters and solu-
tions of interest, but are inappropriate for evaluating fine differences.
Experimental designs that more aptly model real filter deployment tend
to be more complex and costly due to challenges in logistics, controlling
confounding factors, and precisely measuring results. Such experiments
are best reserved for methods and parameters established to be of inter-
est by simpler ones.

Among the common assumptions in spam filter evaluation are:

e Batch or on-line filtering.
e Existence of training examples.
® Accurate “true” classification for training messages.
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Accurate “true” classification for test messages.
Recipient behavior, e.g., reporting errors.
Sender behavior, e.g., resending dropped messages.

Availability of information, e.g., whitelists, blacklists, rule
bases, community adjudication, etc.

Language of messages to be filtered, e.g., English only.
Format of messages to be filtered, e.g., text, html, ASCII,
Unicode, etc.

Quantifiable consequences for misclassification or delay [96].
Time invariance of message characteristics [57].
Effect (or non-effect) of spam filter on sender.

Effect (or non-effect) of spam filter on recipient.

Laboratory and field experiments play complementary roles in scien-
tific investigation. Laboratory experiments investigate the fundamental
properties of filters under controlled conditions that facilitate repro-
ducibility, precise measurement, and ongoing evaluation. Such condi-
tions necessitate the adoption of simplifying assumptions such as those
listed above. Field experiments, on the other hand, rely on different
assumptions, are very difficult to control and their results very difficult
to compare. Methods from scientific fields such as epidemiology [139]
may be used to measure the effects of spam filters, however, such meth-
ods are considerably more expensive and less precise than laboratory
experiments.

1.7 Evaluation Measures

An ideal spam filter would autonomously, immediately, and perfectly
identify spam as spam and non-spam as non-spam. To evaluate a spam
filter, we must somehow measure how closely it approximates this ideal.
Furthermore, whatever measurement we use should reflect the suitabil-
ity of the filter for its intended purpose.

Our ideal suggests four dimensions along which filters should be
judged: autonomy, immediacy, spam identification, and non-spam iden-
tification. It is not obvious how to measure any of these dimensions
separately, nor how to combine these measurements into a single one
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for the purpose of comparing filters. Nevertheless, reasonable standard
measures are useful to facilitate comparison, provided that the goal of
optimizing them does not replace that of finding the most suitable filter
for the purpose of spam filtering.

A fully autonomous spam filter would require no configuration, no
updates, no training, and no feedback. Is a filter that receives nightly
signature files from a central source more or less autonomous than one
that requires user feedback on errors? Is the burden collecting a sample
of labeled messages for training more or less onerous than delivering
updates or user feedback? We cannot imagine a quantitative measure
that could capture the differences between filters in this regard. They
must be controlled when evaluating the other dimensions, but the rel-
ative amounts that filters employing these techniques diverge from the
ideal will remain a matter of qualitative, not quantitative, evaluation.

An immediate filter would introduce no CPU, disk or network
overhead, and would not defer its decision pending the arrival of new
information. We may measure or analyze the efficiency of the filter;
modeling external delay is more difficult. Reasonable delays may not
matter much, but it is difficult to quantify reasonable. A two second
delay per message may be reasonable for an end user, if the filter runs
continuously. If, however, the filter is launched only when the inbox is
opened, a user with 100 new messages may find him or herself waiting
for several minutes. A mail server supporting 100 clients may also find
a 2 second delay per message acceptable; a server supporting 100,000
clients may not.

Failures to identify non-spam and spam messages have materially
different consequences. Misclassified non-spam messages are likely to
be rejected, discarded or placed in quarantine. Any of these actions
substantially increases the risk that the information contained in the
message will be lost, or at least delayed substantially. Exactly how
much risk and delay are incurred is difficult to quantify, as are the con-
sequences, which depend on the nature of the message. Some messages
are simply more important than others, while others are more likely
to be missed, or delivered by separate channels, if they go astray. For
example, advertising from a frequent flier program is less important
than an electronic ticket receipt, but the latter is certain to be missed
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and retrieved, either from quarantine or from a different medium. On
the other hand, failure to deliver immediately a message from one’s
spouse to “come home right away” could have serious consequences.
For these reasons, one must be cautious about characterizing failures
to deliver non-spam in terms of a simple proportion, as such failures are
rare events with causes and consequences that defeat statistical infer-
ence. With this caveat, false positive rate (fpr) — the proportion of
non-spam messages identified as spam (cf. Table 4.1) — is a reasonable
first-order measure of failures to identify non-spam.

Failures to identify spam also vary in importance, but are generally
less important than failures to identify non-spam. Viruses, worms, and
phishing messages may be an exception, as they pose significant risks
to the user. Other spam messages have impact in proportion to their
volume; so false negative rate (fnr) — the proportion of spam identified
as non-spam — is an apt measure.

The overall efficacy of a hard classifier may be characterized by
the pair (fpr, fnr). A classifier with lower fpr and fnr than another
is superior.* Whether a classifier with a lower fpr and higher fnr is
superior or inferior depends on the user’s sensitivity to each kind of
€rTor.

The efficacy of a soft classifier with an adjustable threshold ¢ may
be characterized by the set of all distinguishable (fpr, fnr) pairs for
different values of t. This set of points defines a receiver operating
characteristic (ROC) curve (cf. [58, 82, 166]). A filter whose ROC curve
is strictly above that of another is superior in all deployment situations,
while a filter whose ROC curve crosses that of another is superior for
some threshold settings and inferior for others.

The area under the ROC curve (AUC) provides an estimate of the
effectiveness of a soft classifier over all threshold settings. AUC also
has a probabilistic interpretation: it is the probability that the classifier
will award a random spam message a higher score than a random ham
message. In the spam filtering domain, typical AUC values are of the
order of 0.999 or greater, for clarity, we often report (1 — AUC)%, the

4 Under the assumption that all messages have equal misclassification cost. See Kolcz et al.
[96]
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area above the ROC curve, as a percentage. So AUC = 0.999 would be
reported instead as (1 — AUC)% = 0.1.

False positive rate, false negative rate, and receiver operating char-
acteristic curves are the standard measures of (e.g., medical) diagnos-
tic test effectiveness [66]. This review uses primarily these measures;
a spam filter is a diagnostic test applied to email for which a positive
result indicates spam, and a negative result indicates non-spam. In Sec-
tion 4.6, we review the diverse set of measures that have been applied to
spam filters, and argue that diagnostic test methods are most suitable
for comparative analysis.

1.8 Systematic Review

Spam filters have evolved quickly — and somewhat separately — in
several milieux with different histories, objectives, evaluation methods,
and measures of success. Practitioners have been concerned primar-
ily with keeping their heads above water, delivering spam filters as
quickly as possible to combat an ever-increasing tide of spam. Aca-
demics have, in large part, studied the problem as an application of
the techniques and methods of information retrieval, machine learning
and computer systems. Commercial product development and product
testing involve yet another set of interests, methods, and measures of
success. These groups have had limited interaction; as a consequence, it
is exceedingly difficult to deduce from the literature or other sources the
relative performance and promise of current and proposed spam filter
methods.

The literature, including the so-called gray literature (dissertations,
technical reports, popular press articles, commercial reports, web pub-
lications, software documentation and cited unpublished works) was
searched for articles describing a spam filter or spam filtering method
and an evaluation of its effectiveness. Articles were characterized by
their methods and assumptions according to the taxonomy presented
here. Where sufficient information was given in the article, quantita-
tive results were recast as (fpr, fnr) or summarized using 1 — AUC
expressed as a percentage, otherwise the results were omitted from this
review. Results derived using incorrect methodology, or results that
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are insufficiently noteworthy because their results are represented bet-
ter elsewhere, were similarly omitted. Several hundred articles were
considered for this review; perhaps one-third of them met our selection
criteria.

Certain aspects of spam filtering are well represented in the litera-
ture, while others are hardly represented or not represented at all. This
review reflects this uneven coverage, reporting some aspects in detail
while leaving others as largely uncharted territory.



2

Spam Classifiers — Hand-Crafted

At the core of every spam filter is a classifier that estimates, based on
available information, whether a given message is spam or not. The
exact nature of the available information depends on the deployment
scenario and the requirements of the classifier, the estimate is either
categorical (hard classification), or ordinal or continuous (soft classifi-
cation).

For the purpose of this review, we separate available information
into two components: the message m itself, and extrinsic information e
gathered from elsewhere. m is defined broadly to include not only the
text of the message, but all information specific to it, such as header
and envelope information, recipient, time of arrival, and so on. e encom-
passes all other information, including the filter’s memory and external
sources (see Figure 1.5) as well as rules encoded in the filter itself.

Nearly all filters in use today employ hand-crafted classifiers, or
machine learning methods (cf. [153]), or both. The overall objective
is the same — to classify messages as spam or non-spam — but the
approaches, and the perspectives of those investigating the approaches,
differ considerably. To reflect this diversity, this discussion is divided
into two sections. The present section defines formally the classification

356
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problem, and reviews hand-crafted spam classifiers within the context
of this definition. The following section reviews machine learning meth-
ods to construct spam classifiers.

2.1 Definitions

We assume that every message m is either spam or not; the universe of
messages M is partitioned into two sets, spam and non-spam such that
every m € M, where M = spam U non-spam and spam N non-spam =
@. Membership in spam is specified by our definition in Section 1,
or by a similar subjective definition, which can be neither formalized
nor determined with certainty for all messages. The key challenge for
spam filtering is to build a classifier — a concrete function that answers
accurately, for any m, the question “given m, is m € spam?”
An ideal spam classifier would be a total function

isspam : M — {true, false}

such that isspam(m) = true if and only if m € spam. Due to the defi-
nition of spam, such a classifier cannot be totally realized, instead we
build an approximate classifier ¢ such that ¢ = isspam. Hard and soft
classifiers employ different notions of approximate. A hard classifier

c: M — {true, false}

approximates isspam to the extent that ¢(m) = isspam(m) for all m €
M’ C M. A soft classifier

c:M—R

approximates isspam to the extent that ¢(m) > ¢(m’) for all (m,m’) €
P C spam x non-spam. A hard classifier ¢, may be defined in terms
of a soft classifier ¢, and a fixed threshold ¢:

| true (cs(m) > 1)
cn(m) = {false (cs(m) <t)

A utility measure quantifies the extent to which ¢ approx-

imates the ideal classifier. A naive utility measure for a hard
: - M| .
classifier is accuracy = IR Alternatively, a cost measure such as
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error =1 — accuracy quantifies the extent to which ¢ departs from
the ideal. Accuracy and error are commonly reported and commonly
optimized in filter construction, notwithstanding their shortcomings
as measures of spam filter effectiveness. As a pair, the cost functions

_ |non-spam N {m|c(m) = true}|

fpr

|non-spam|
and

fr — |spam N {mlc(m) = false}]

|spam|

distinguish between spam and non-spam error rates. For a soft
classifier, we use the cost function

| — AUC — Ispam x non-spam 0 {(m,m)|c(m) < c(m')}|

|spam| * |non-spam)|

It is useful to formalize the process of building the classifier from
available evidence separately from the classifier itself. A classifier con-
structor C takes as input extrinsic information e from domain E and
yields either a hard classifier ¢ : M — {true, false} or a soft classifier
c: M — R;thatisC: E — (M — {true, false})orC: E — (M — R).
Although represented formally as a function that returns a function,
C may be effected by hand, for example, when rules or patterns are
embedded into a program that implements ¢, the programmer imple-
ments C' by hand. On the other hand, C' may be an explicit automatic
step in filtering, for example, when a supervised learning algorithm
induces c from a set of labeled training examples. Or C may be implicit,
in effect constructing a new classifier based on new evidence e for every
message m, such is the case with on-line filters that consider all infor-
mation available at the time of classification. Whether the constructor
is manual, explicit or implicit, it is useful to consider a spam filter
f:(E x M) — {true, false} or f:(E x M) — R to be a function on
two inputs defined in terms of applying a classifier constructor to e,
and then the resulting classifier to m; that is, f(e,m) = (C(e))(m).
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2.2 The Human Classifier

If no automated filter is installed, the role of filtering or spam avoidance
is assumed by the human recipient, that is, ¢ is constructed and applied
in the user’s head. A human can usually identify email spam from
a summary line containing the sender’s name, subject, and time of
delivery, that is, based on a subset of m. Occasionally the user will
mistakenly open a spam message' thinking it is non-spam, or delete or
overlook a non-spam message thinking it is spam. These occurrences
constitute false negatives and false positives, respectively. The human
classifier ¢ therefore has nonzero fpr and fnr which could be measured
by a suitable experiment.

Studies which assess the costs and benefits of manual filtering are
rare. Commercial studies [2, 60, 59] have estimated categorizing spam
to cost of the order of 10 minutes of productivity per day, based on
self-reporting through surveys or assumptions regarding the number of
spams received and the time required to identify each spam message.
Total spam volume has increased considerably since these studies were
conducted, while filter use has become common. The studies’ assump-
tions imply that, absent filter use, lost productivity would be propor-
tional to the volume of spam and hence considerably higher than 10
minutes per day.

The risk of email loss due to deployment of a spam filter must
be compared with the risk due to human filtering. Yerazunis [194]
carefully adjudicated the same 1900 email messages on two separate
occasions, observing a disagreement on 3 messages. Since Yerazunis
examined the full text of each message and spent considerably more
time than assumed by the aforementioned studies, his disagreement
rate (0.16%) would appear to be a lower bound on that achievable by
humans in the course of reading a mixture of spam and non-spam.?
Yih et al. [199] report a 3% error rate by Hotmail users in manu-
ally classifying a random selection of their incoming messages. Using a

L A spam message may be able to exploit the user interface to deliver its payload without
any explicit action on the part of the user.

2 Assuming that Yerazunis’ sample and efforts are representative of email and user’s capa-
bilities in general.
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Web interface, Graham-Cumming [73] collected 357,380 judgments for
92,186 spam and non-spam messages from self-selected participants.
His results show an average disagreement among participants of about
10%, and an average disagreement with the official classification of
about 6.75% [149].

Spam senders employ social engineering to increase the error rate of
human filtering by composing the messages so as to convince the user
to read and respond to the message. Benign subject lines or urgent
subject lines that may appear to be from an acquaintance or authority
are common (cf. Figure 2.1). Spam may be designed to exploit system
insecurities to deliver its payload regardless of whether or not the mes-
sage is selected to be read. Examples include automatically rendered
preview images, automatically transmitted delivery receipts, or short
subject lines that contain the payload itself.

¥ Your westernunion account is inactive - PLEASE UPDATE IT NOW! - SeaMonkey
[k [ICH|

Subject: Your westernunion account is inactive - PLEASE UPDATE IT NOW! B
From: <customer service@westernunion.ca>
Date: Sun, 17 Jun 2007 19:21:18 -0700

We are contacting you regarding your Western Union account. Due to
inactivity, your account has been deactivated from using our services.
Therefore, we invite you to update your Western Union profile in order
to regain full access to our services.

Please go to http://wumt.vvesternunion.biz/asp/ca/reglogin/ A to
confirm your identity and update your profile.

Please Note: If your account information is not updated within the
next 24 hours, your account will be deleted.

We apologize for any inconvenience this may have caused.

Best regards,
Western Union Customer Service.

Western Union endeavors to maintain physical, electronic and
procedural safeguards to guard your Information. We also endeavor to
restrict Information access to our employees, agents and
representatives that need to know it. Western Union will never

disclose your personal or billing information to a third party. E
Copyright B® 2007 Western Union Canada. All Rights Reserved. r=
6 S FY o R |

Fig. 2.1 Social engineering.
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2.3 Ad Hoc Classifiers

Ad hoc filtering techniques are devised in response to a particular form
of spam or in response to the particular needs of a single user or
restricted set of users. A user or system administrator may choose to
block or quarantine, for example, messages that

e Contain a particular word or phrase (e.g., teen or
MAKE MONEY) in the subject.

e Contain attached files of a particular type (e.g., scr).

e Are sent in a particular format (e.g., Unicode).

e Appear to be sent from one of a particular set (a black list)
of users, hosts or domains (e.g., .ru).

e Appear not to be sent from one of a trusted set (a white list)
of users, hosts or domains (e.g., gvcormac@uwaterloo.ca).

Most email servers and clients support the definition of simple patterns
to implement these policies. Because the patterns are written and mod-
ified in response to specific threats and needs, it is very difficult to study
their efficacy and generalizability in a systematic way.

Ad hoc rules may have unforeseen consequences. Features that
“obviously” indicate spam may occur, albeit rarely, in important non-
spam messages. In an effort to block a flood of non-delivery messages
resulting from a spam campaign that impersonated the author, an
ad hoc filter was created to block messages quoting a “From:” line
containing his email address, but not his name as would be contained
in any message actually sent by him. This approach was very effec-
tive, except for two unfortunate circumstances that resulted in false
positives:

(1) The filter blocked a response from a foreign embassy to
an inquiry regarding the status of a visa application. The
embassy response quoted the inquiry verbatim, except that
for some reason (possibly security) it removed the sender’s
name from the From: field.

(2) A conference management system, configured to send email
on behalf of the author, did not include his name.
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The benefits and risks of ad hoc filtering are exceedingly difficult to
measure, such reports appear to be absent from the literature.

2.4 Rule-Based Filtering

While it is difficult to draw a firm distinction between ad hoc and rule-
based systems, we generally distinguish them by the following criteria:

® Rules are specified using a specific formal notation, as
opposed to being embedded in the various tools that imple-
ment them.

e Multiple rules are brought to bear in classifying a message.

® The classifier is itself easily identified as a “black box” with
specific inputs and outputs.

e Rule bases are designed to be more general to facilitate
widespread deployment.

The ubiquitous SpamAssassin [164] open-source spam filter is the lead-
ing example of a rule-based filter.> While SpamAssassin consists of sev-
eral thousand lines of Perl code, the rules themselves (dubbed “tests”
in SpamAssassin parlance) are encapsulated in a few configuration files.
Each test may be specified as a pattern which is applied to the email
message, or as a query to a built-in routine that performs computation
or data access that cannot be effected by a simple pattern. An example
of the former is the test MILLION_USD, implemented as the pattern

/Million\b.{0,40}\b(?:United States? Dollars?|USD)/1i,

which indicates a Nigerian scam. Examples of the latter are
USER_IN_BLACKLIST and USER_IN_WHITELIST. With each test is asso-
ciated a score to indicate whether the test indicates spam or non-spam,
and how strongly so. Overall, the message is classified as spam if the

3 SpamAssassin has now evolved into a hybrid filter, incorporating within its rules the results
of many non-rule-based components, such as whitelists, blacklists, and machine-learning.
Furthermore, combining weights for rules are derived using machine learning. See, for
example, Figure 2.2 which displays the result of applying SpamAssassin to the message in
Figure 2.1.
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sum of the scores of the tests that “fire” exceeds some threshold, typi-
cally 5. SpamAssassin is shipped with a default set of about 800 rules,
along with default scores and a default threshold. The user or adminis-
trator may alter the rules and scores, many custom rule-sets are main-
tained by third parties and available for download.

Spam countermeasures against rule-based filters employ the same
general techniques as against ad hoc filters: spam messages are engi-
neered to avoid the rules. To the extent that rules are better formalized
and shared, spammers are better able systematically to test whether or
not their spam avoids triggering the rules. Spammers routinely install
and test against common filters like SpamAssassin.

2.5 Whitelists

A whitelist is a list of senders whose email should be delivered, notwith-
standing the outcome of the spam filter. The address book of the recip-
ient is commonly used as a simple whitelist, under the assumption
that spam would be unlikely to arrive from these email addresses. The
whitelist need not be an address book, and it may contain domain
names or IP addresses instead of email addresses. Then the user
may, using tools provided by his or her email client, maintain his or
her whitelist explicitly, or automated tools may deduce the whitelist
from email traffic (e.g., the auto-whitelist feature of SpamAssassin).
Global whitelists may be maintained by email service providers or other
organizations.

Such whitelists may be compromised if the spammer can determine
or guess an address on the list and “spoof” the spam message so as to
appear to have been sent from that address. One way to guess addresses
likely to be whitelisted is simply to use real email addresses harvested
from the web or elsewhere. Today, almost all spam is sent from such
an address, to maximize the probability, however small, that address is
in the recipient’s whitelist. More sophisticated data mining techniques
cluster email addresses by domain or by their co-occurrence on web
pages. The author, for example, receives a disproportionate number
of spam messages spoofed to appear to be sent by his co-authors for
various published works. Viruses and other malware can easily harvest



364 Spam Classifiers — Hand-Crafted

the address books and other files of compromised machines for email
addresses likely to be found in correspondents’ whitelists.

Spoofing email is all too easy. The internet message format enforces
no authentication at all, the sender’s email address means nothing more
than the return address written on the envelope of conventional mail.
Email messages contain so-called Received: headers, akin to post-
marks, which provide some evidence of the veracity of the sender, but
they are not easy to parse and it is not easy to verify that they them-
selves are not forged [111].

2.6 Blacklists

A blacklist is a list of senders, domains or IP addresses messages from
which are deemed to be spam. While whitelists and blacklists are, in
a sense, complementary, they are not symmetric. Unlike a whitelist,
which must be used in conjunction with another filter, a blacklist acts
as a filter in its own right. However, a single user cannot compile a
large enough list of possible spam senders for a personal blacklist to
be of much use as a general spam filter. Instead, organizations compile
large databases of IP addresses or domain names known to or likely to
send spam, and spam filters query these databases in real-time.

The first major example of such a list was the Real-time Black-
hole List (RBL) for the Mail Abuse Prevention System (MAPS) [116].
RBL and similar databases, collectively known as Domain Name Server
Blacklists (DNSBL) use the internet Domain Name Server (DNS) as
an efficient mechanism to query the blacklists [15].

Populating and maintaining comprehensive, accurate blacklists
presents substantial challenge. Spam is sent from a vast number of
sources, and the blacklist’s effectiveness depends on being able to iden-
tify the source of most messages. One method is to examine a large
number of spam messages and to add the source of spam messages
to the blacklist. This approach dictates that a very large number of
messages be examined, few organizations have the resources to do so
themselves. One approach is to rely on the community at large to
report spam senders, another is to use spam traps or honeypots —
email addresses which have no legitimate purpose — and assume that
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all email sent to such addresses is spam [130]. Technical aspects of the
IP address, such as the fact that it is allocated by the Dynamic Host
Control Protocol (DHCP) may be used to populate a blacklist. Such
a dial-up blacklist is effective because a large fraction of spam is sent
by compromised machines or by unscrupulous clients of retail internet
service providers, these machines typically have dynamic IP addresses.
The effectiveness of a blacklist depends on its completeness, its accu-
racy, and the inability of spam to spoof non-blacklisted addresses.

2.7 Collaborative Spam Filtering

The nature of spam is such that each message is typically sent to a
vast number of recipients. Chances are that a particular recipient is
not the first to receive any particular message; it is likely to have not
only been received but also recognized as spam by somebody else (or
somebody else’s spam filter or honeypot). Collaborative spam filtering
is the process of capturing, recording, and querying these early judg-
ments [46, 50, 157]. The false positive and false negative rates of this
approach depend on both human and technical factors which limit the
timeliness, completeness, and accuracy of these three steps. Ideally, col-
laborative filtering could approach, in the aggregate, a false negative
rate of %, where n is the number of copies of each message sent by the
spammer, and a false positive rate of 0.

The completeness of the approach is limited by the number of users
who participate in the system, the effective value of n, therefore, is not
the number of messages sent by the spammer, but the number of mes-
sages sent by the spammer to a participant in the collaborative filtering
system. Participants may fail to recognize a message as spam, or, they
may not bother to record their judgments. Spammers may send out
thousands of spam messages in a few minutes in an effort to capitalize
on the time it takes participants to recognize and report spam. Partic-
ipants may inadvertently mark non-spam messages as spam, malicious
users — perhaps the spammers themselves — may do so deliberately
to increase the false positive rate and therefore compromise the system.

An essential component of a collaborative spam filtering system is a
real-time database of known-spam messages that can be updated and
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queried by diverse users. Practical considerations render it impossible to
store entire messages in this database: it would be too large; query and
update times would be excessive; privacy of messages might be compro-
mised. A cryptographic hash function preserves privacy and allows for
efficient query and update, but works only if the spam messages sent by
a spammer are identical. In fact, they will differ somewhat due to their
headers and other artifacts of delivery. And in an effort to defeat collab-
orative spam filters, spammers commonly generate messages that are
trivially different. The crux of collaborative spam filtering is to record
messages in such a way that nearly identical messages will be matched,
while ones that differ more substantially will not [99, 97].

2.8 Challenge—Response

A challenge-response system [177] demands that a sender take special
action in order to have his or her message delivered to and added to the
whitelist of a particular recipient. The special action may be as simple
as clicking a link or resending, or may involve supplying credentials,
solving a puzzle [26], making a payment [171, 135], or performing a
time-consuming computation [55]. The task is designed to as to be easy
enough for a legitimate sender to accomplish, but too difficult, time
consuming or expensive for a spammer sending thousands or millions
of messages.

Challenge-response systems differ in the mechanisms used to com-
municate the challenge-response. A “classical” challenge-response,
implemented by the recipient’s email server, holds the message and
issues a challenge message to the (purported) sender with instructions
on how to respond. Since the vast majority of spam sender addresses
are forged, these challenges themselves may be considered spam. It is
apparent that if every user employed such a spam filter, no email would
ever be delivered. Furthermore, some legitimate mail messages — for
example, mailing lists and responses to web transactions — are sent by
automated servers that would be unlikely to respond to challenges. For
these reasons, their use is widely disfavored [76].

Pre-challenge systems [137] embed the challenge-response process
into the sender’s interface, evidence of a successful response is either
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embedded in the message or transmitted by a separate interface. One
of the commonest pre-challenge tasks is the human interactive proof
[23, 25, 26, 159].

2.9 Greylisting

Greylisting is a form of challenge—response that engages the sender’s
mail delivery software rather than the sender [77, 106]. Messages are
summarily rejected with a “soft” error code that invites retransmission.
Under the assumption that non-spam is more likely to be re-sent than
spam, this method acts as a spam filter.

Greylisting, like challenge-response, imposes delay and may result
in lost legitimate messages, as it depends on the sender to retrans-
mit and on the filter’s ability to recognize the retransmission as such.
Furthermore, lost messages are nearly impossible to detect or recover.
Greylisting is trivial to defeat, all the spammer must do is to implement
the invited retransmission. Presently, many spammers find it more cost
effective not to, estimates range as high as 80%. The rate of lost legit-
imate email is difficult to measure, it is certainly nonzero [106].

2.10 Technical Measures

As noted above, many spam filtering techniques rely on being able to
verify the identity of the sender or the sender’s domain. Several pro-
posals have been made to enhance the internet mail protocol to provide
secure authentication of messages. These include Sender Policy Frame-
work (SPF) [193], Sender-ID [115], and Domain Keys Identified Mail
(DKIM) [110] which have been deployed by several major email service
providers. To date, they are far from ubiquitous, and their impact is
yet to be determined.

2.11 Combined Methods

Ad hoc and rule-based spam filters employ a “cocktail” of methods [11],
composing separate classifiers to form one overall classifier. The com-
position itself is typically done in an ad hoc manner; in a pipeline, for
example, filters sequentially examine the message until it is summarily
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Content analysis details:

pts
1.0
2.0
0.0

rule name

(10.2 points, 5.0 required)

description

NO_REAL_NAME
BIZ_TLD
BAYES_50
URIBL_JP_SURBL

URIBL_OB_SURBL

TO_CC_NONE

Fig. 2.2 Virus spa.

blocked (or delivered) by one of them. SpamAssassin is a prototyp-
ical example in which many filters and tests are instead applied in
parallel, and the results combined using a formula; the result of apply-
ing SpamAssassin to the message in Figure 2.1 is shown in Figure 2.2.
More systematic methods of stacking autonomous filters using machine

From: does not include a real name

URI: Contains an URL in the BIZ top-level domain
BODY: Bayesian spam probability is 40 to 60%
[score: 0.5249]

Contains an URL listed in the JP SURBL blocklist
[URIs: vvesternunion.biz]

Contains an URL listed in the 0B SURBL blocklist
[URIs: vvesternunion.biz]

No To: or Cc: header

learning techniques [114, 154] are discussed in the next section.
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Spam Classifiers — Machine-Learning

A classifier constructor C' takes extrinsic information e as input and
generates a classifier ¢ as output. The methods reviewed in the pre-
vious section rely on hand-crafted implementations of C'. The meth-
ods reviewed in the present section seek to replace much of the hand
crafting by automatic machine learning methods. It is impossible to
eliminate the hand-crafted component altogether, as in general e is a
member of a huge amorphous universe E. e may be characterized as
“any data drawn from all possible sources.” E is therefore unsuitable
as the domain for an automated constructor.

Instead we define a learning-based constructor to have two com-
ponents: an abstractor A:FE — D and a learner L:D — (M —
{true, false}) or L: D — (M — R) such that C = L - A. We refer to
D, the range of A and domain of L, as the learner domain D, and a
concrete representation for each d € D, are defined formally to facil-
itate the implementation of L by some machine learning algorithm.
The hand-crafted definition of D and implementation of A are essen-
tial aspects of any machine-learning classifier; only L is automated.

The problem of designing an amenable learner domain is open-
ended. Most designs can be characterized as having one of several

369
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established learning modes and some particular feature representation.
We consider the commonest examples in the following subsections,
followed by specific techniques for abstraction and learning.

3.1 Learning Modes
3.1.1 Supervised Learning

Supervised learning [102] is a common mode for machine-learning clas-
sifiers. The learner’s input (7', label) consists of a set T C M of training
examples and a function label : T' — {true, false} that approximates
isspam over the sub-domain T'. label is typically hand-crafted using
a human classifier. Under the assumptions that 7" is an independent
and identically distributed (i.i.d.) sample of M and that label(m) =
isspam(m) for all m € T, the learner induces the parameters of a model
for m € spam and uses this model to construct ¢ that optimizes some
utility function, typically accuracy.

Supervised learning — along with its associated assumptions —
is so common that it is often assumed without question. But it can
be exceedingly difficult to obtain a sample — especially an i.i.d. sam-
ple — of messages to be classified. Indeed, many members of M (the
very ones we are interested in classifying) exist only in the future, and
are therefore simply impossible to sample. Constructing label is suffi-
ciently onerous and error-prone that the assumption of its existence is
questionable. One should not assume that optimizing accuracy yields
the classifier most suitable for its intended purpose: detecting spam.

3.1.2 Semi-Supervised Learning

Semi-supervised learning [204] assumes input (7', S, label), where
TCM,ScCT and label : S — {true, false}, that is, label is defined
for only a subset of the training examples. Semi-supervised learning
accommodates the fact that obtaining sample messages may be con-
siderably easier than labeling them, as is often the case with email
spam. Semi-supervised learning assumes, like supervised learning, that
T is an i.i.d. sample of M. This assumption may allow the learner to
learn more about the distribution of M from the unlabeled examples
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in T\S. A vacuous semi-supervised learner is simply the supervised
learner with input (.S, label), this learning provides a convenient base-
line against which semi-supervised learners may be compared.

3.1.3 Transductive Learning

Transductive learning [91] is a special case of semi-supervised learning
with input (7', S, label) as before. The difference is that the output is a
partial classifier ¢ : T' — {true, false} or ¢: T — R defined only on the
sub-domain T'. Transductive learning methods may be used when clas-
sifier construction is implicit: the messages to be classified are known
at the time of classifier construction, and the classifier is reconstructed
for future messages.

3.1.4 Unsupervised Learning

Unsupervised learning [65] assumes no label function at all, that is, the
input is simply a set T'C M, and is rarely used directly to construct a
classifier. Unsupervised learning methods may nevertheless be used in
conjunction with others; for example, clustering methods may be used
to find groups of similar messages under the assumption that each
member of a group belongs to the same class.

3.1.5 Active Learning

Active learning [147] allows the classifier to request labels for some
subset of the unlabeled training data. A spam filter may, for exam-
ple, ask the user to mark several messages each as ham or spam, and
classify the rest based on these examples. The prototypical method for
active learning is uncertainty sampling [107], in which a soft classifier is
applied to each unlabeled example, and labels are requested for those
whose classifier result is closest to the threshold ¢.

3.1.6 On-line Learning

The modes discussed so far assume that M is a static set, that T is a
sample of that set, and that (except for transductive learning) a classi-
fier is to be constructed whose domain is all of M. On-line learning [36]
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assumes that the messages in M are ordered chronologically, or, more
generally, by some relation <. The semi-supervised on-line learner’s
input is (7, <,m/,S,label), where T C {m|m < m'} for some m’ € M,
S CT, and label : S — {true, false}. The supervised learner assumes
S =T. The domain of the constructed classifier ¢: U — {true, false}
or ¢: U — R is the set of later messages U = {m|m > m'}.

An on-line learner may be constructed trivially from the correspond-
ing supervised or semi-supervised batch learner by ignoring the order-
ing relation, however,

® The training examples are certainly not an i.i.d. sample of
the examples to be classified, as they are separated by the
ordering. Therefore the assumptions of the batch learner are
not met.

e Typical deployment of an on-line learner involves classify-
ing a sequence of messages m; < mg < --- < my, each in
turn. The maximum information is available to the learner
if a new classifier ¢; is defined for every m; (1 <i <mn) with
T = {mj<;}. If the construction of ¢; examines every training
example in T;, the time required will be at least proportional
to 7, that is, the time to classify the sequence of messages will
be quadratic in n, effectively precluding on-line deployment.

Incremental learning may be used to reduce the overall cost of classify-
ing a sequence. An incremental learner efficiently constructs c;;1 from
the data structures representing ¢; and m; without necessarily examin-
ing all of the examples in T;. The amenability of the learner to efficient
incremental construction is an important criterion in the choice of a
method for on-line filtering,.

Incremental learning may be approximated using a non-incremental
learner, batching, and a sliding window. Batching is predicated on the
assumption that c¢;1A may be approximated by c¢; provided A is not
large. Thus a new ¢; is constructed whenever i = 0 (mod A), otherwise
Ci =Cp| 4] for some fixed not-too-large A. The overall effect is to
improve learner efficiency by a factor of A. A sliding window con-
siders only the most recent w messages as the training set, that is,
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T; = {mjli —w < j < i}. The use of a sliding window renders overall
learning time proportional to n.

Training example selection may yield better results than a sliding
window. In general, we may select any T; C {m;<;} such that |T;| < w,
and provided the selection is done without consulting any my, ¢ T;. The
sliding window is a special case of training example selection.

3.2 Feature Engineering

To construct a classifier ¢ : M — {true, false} or ¢: M — R it is nec-
essary to define a concrete representation for every m € M. This
representation may be, but is typically not, simply the textual rep-
resentation of the message. In general, a message is represented as a
collection of features derived from the message, or from extrinsic infor-
mation related to the message. The process of defining and extracting
features likely to be useful to the classifier — feature engineering —
has a profound impact on overall spam filter effectiveness. The reader
should be skeptical regarding claims (positive or negative) for any par-
ticular learning method that fails to note the method of feature repre-
sentation or the mode of learning.

The classical methods of feature engineering for spam filtering are
largely derived from established methods for information retrieval and
supervised machine learning. We present them first due to their histor-
ical weight, notwithstanding recent results suggesting the superiority
of simpler methods for spam filtering.

3.2.1 Feature Vectors

A message m is typically represented a vector of n features z =
(z1z9---xy), where each x; is a number or categorical value quanti-
fying some evidence pertaining to the message that might be useful
to the classifier. A feature extractor Z : M — X computes for a given
message m € M the corresponding feature vector x € X, where X is an
n-dimensional space.

A simple and common example is the bag of words model. The
distinct words contained in the training set are enumerated, assigning
to each a unique dimension in X. For each message m, we might define
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Z(m); to be the number of times that the ith word occurs in m (the
term-frequency model, cf. [53]). Or, we might divide that number by
some function that increases with the total number of documents that
contain the word (the tf-idf model, cf. [53]).

Some learners perform poorly, either in terms of efficiency or clas-
sification performance, for large n. Feature selection is commonly used
to reduce n and hence the dimensionality of the feature space X. More
generally, dimensionality reduction techniques may be used to trans-
form and or project X to a space of smaller dimension.

Stop word elimination is a simple example of feature selection in
the bag-of-words model, common words are simply not enumerated.
Many statistical techniques have been proposed and used to identify
the most important features, the rest are eliminated. Stemming is a
simple example of dimensionality reduction: all morphological variants
of the same word are mapped to the same dimension. More sophisti-
cated methods, such as latent semantic indexing [63, 64], transform the
entire space to one of smaller dimension.

Some feature engineering choices may interfere with incremental
classifier construction, and hence efficient on-line deployment. The set
of features or the set of values for a particular feature may grow as new
messages are learned, amenable algorithms and data structures must
be chosen. Global statistics like tf-idf must be recomputed when used,
as the addition of a single document changes every tf-idf term.

Most importantly, feature selection or dimensionality reduction is
problematic in an on-line environment. If the method uses statistics
over the training set, these statistics will change with every new mes-
sage, possibly occasioning the complete reconstruction of the classifier.

3.2.2 Tokenization

The bag of words model arose from early information retrieval research
indicating that it worked as well for full text retrieval as more complex
models that take, for example, word position, into account. Much of
the spam filtering literature simply assumes this model.

Many variants of this model exist, depending on what one considers
to constitute a word. In English text one may reasonably identify
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words as strings of consecutive letters separated by punctuation or
spaces. Some minor details, such as whether words may contain
apostrophes or digits, have been found to be of little consequence.
Much attention has been paid to the use of stemming, which seeks to
treat all morphological variants of a common root word as the same.
Stemming methods are necessarily approximate and heavily language
dependent, and have shown indeterminate results in information
retrieval and filtering. Similarly, the consideration of case — whether
or upper case and lower case representations of the same letter are
considered distinct — has shown indeterminate results. The overall
consensus appears to be that these variants — and also those that
identify synonyms — do not matter much [53].

The common assumption that email consists of English text, or
even Roman text, is difficult to justify. Email is an international
medium, containing messages in a vast number of languages using
non-Roman alphabets, many of which have, like Chinese, no natural
concept of “words.” The bag-of-words model demands that we iden-
tify the language and devise language-specific tools to recognize words
and word variants. Even an email message composed in English is not
strictly English text. Email includes structured information which is
not “English text” such as the header fields and MIME meta data.
The character set may be encoded in many different ways. The text
itself may be embedded in documents with a variety of formats, such
as plain text, html, word-processor format, pdf, images, and so on.
A substantial part of the message may involve non-textual media
such as photographs, audio, and video. It is not obvious how to map
these diverse data formats to the bag of words model, the alternatives
range from complex format-specific interpretation to simply ignoring
them.

Spammers have employed many obfuscation methods in an attempt
to defeat spam filter tokenization [75, 81, 131] which in turn have given
rise to deobfuscation techniques that aim to recover the original tokens
[104, 105].

Recently, spammers have used distorted and noisy images to convey
text messages, much attention has been paid to the specific problem
of extracting features from these images [8, 14, 22, 52, 62, 186],
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however, the overall impact of image-specific techniques has yet to be
established [74].

3.2.3 Synthetic Words

The bag-of-words model may be extended, by the introduction of syn-
thetic words, to capture additional information beyond which words
appear somewhere in the message. Synthetic words are commonly
denoted using a representation that would not actually be recognized
as a word in the text, for example, by including a punctuation symbol.
An effective use of synthetic words is to indicate the particular mes-
sage field in which a word occurs [69]. subject :money might indicate
the occurrence of the word “money” in the subject field of the mes-
sage, whereas body:money would indicate its presence in the text of
the message, and money would indicate its appearance anywhere in the
message.

Virtually any feature may be inserted into the bag of words model
by the use of synthetic words. The results of applying SpamAssassin’s
entire rule-set might be represented by 800 synthetic words. At some
point, however, the use of synthetic words departs from the assumptions
implied by the “bag of words” label, and loses the essence of the bag-
of-words model. We have, for example, used Bogofilter — a bag-of-
words based filter — to classify arbitrary feature vectors by rendering
the vectors as a sequence of nonsense words, with each distinct word
representing a particular feature [36].

3.2.4 Word Bigrams and Trigrams

Names and idioms often consist of several juxtaposed words. For
example, the term “information retrieval” conveys a much more
specific meaning than the words “information” and “retrieval”
taken separately. Bigrams — pairs of consecutive words taken
together as individual features — reflect the difference in mean-
ing when words are taken together. A text is split into bigrams
by taking every pair of adjacent words to form a synthetic word.
For example, the text to be or not to be contains five bigrams:
totbe, betor, or+not, not+to, to+be. While the bigram model
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captures information that is not captured by the bag-of-words model, it
involves quadratically more features: each word may potentially appear
in a bigram with each other word. This large number of features may
be undesirable for two reasons: first, a learning methods may simply be
unable to cope with such a large number; second, particular features
may occur so rarely that they fail to provide meaningful input to the
filter. For this reason, bigrams may be used in in addition to simple
words (unigrams), and feature selection may be used to eliminate rare
bigrams.

Trigrams (three adjacent words) and N-grams (/N adjacent words)
for N > 3 generate an exponential number of features, and appear
to yield no substantive improvement over bigrams, even in iden-
tifying phrases consisting of more than two words. It turns out
that messages containing “Hubble space” and “space telescope” but
not “Hubble space telescope” are exceedingly rare, so the feature
hubble+space+telescope contributes little.

3.2.5 Sparse Bigrams

Interactions among nearby (but not adjacent) words may be captured
as sparse bigrams. A sparse bigram is simply a pair of words separated
by no more than k£ words. k = 0 yields ordinary bigrams, while k =3
is typical. A text with n words will generate n(k + 1) sparse bigrams,
and the interaction among words decreases rapidly with separation.
For k =2, the text to be or not to be generates the sparse bigrams
to+be, to+or, to+not, be+or, be+not, be+to, or+not, or+to, or+be,
not+to, not+be, to+be.

Orthogonal sparse bigrams (OSB) [158] further classify sparse
bigrams by the number of intervening words, each of which we denote
by “?”: to be or not to be generates the sparse bigrams to+be,
to+7+or, to+7+7+not, be+tor, be+7+not, be+7+7+to, or+not, or+7+to,
or+7+7+be, not+to, not+7+be, to+be. OSB derives from and simplifies
earlier work on sparse binary polynomial hashing (SBPH), (cf. [158])
which treats as features all sub-sequences of length 2 or more contained
in an interval of k 4+ 2 words.
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3.2.6 Character N-Grams

N-gram techniques may be applied to characters instead of words. Our
running example could, for example, be represented as the character
trigrams to_, o_b, _be, be_, e_o, and so on, where _ represents a space
in the input. Because the number of distinct characters is much smaller
than the number of distinct words, larger values of N are useful and
practical; N =3 and N =4 are typical. Although character n-grams
make fewer linguistic assumptions than their word counterparts, evi-
dence suggests that they capture inter-word as well as intra-word inter-
actions, and are reasonably robust to spelling errors and morphological
variants.

3.2.7 Meta Features

Meta features represent the results of other filters — perhaps based on
other machine learning algorithms — applied to the message. Simple
meta features might include message length, the proportion of upper
case letters, the number of addressees, the results of ad hoc rules or
other filtering techniques, and so on. The choice of information to rep-
resent is limited only by our imagination and the learning method’s
ability to harness it.

3.2.8 Feature Selection

Feature engineering techniques yield a potentially large number of fea-
tures, a number which may be unwieldy or compromise the efficiency
or efficacy of evidence combination. The bag-of-words approach yields
one feature per word that occurs in any message, overall an unbounded
number that commonly exceeds 10,000 and may approach 1 million
over a large set of messages. Bigram and n-gram models potentially
yield quadratically or exponentially more. The process of feature selec-
tion identifies those features likely to yield the most evidence to the
classifier, discarding the rest.

It should be noted that the vectors representing these features are
sparse, with the net effect that the overall number of non-vacuous ele-
ments |{E£(m;); # 0}| representing any set of messages is proportional
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to the overall size of the messages in the set. So long as the algorithms
and data structures consume time and space nearly proportional to this
size, the full feature set may be used. These time and space constraints
are likely occasioned in any event by the application-specific require-
ments outlined in the introduction to this section. This observation has
three consequences:

(1) Feature selection may mnot be justified by efficiency
considerations.

(2) Application constraints may preclude selection methods with
super-linear time and space requirements.

(3) Methods that require statistics over an entire set of messages,
such as frequency counts, are not adaptive and may preclude
on-line learning.

At the time of writing it is not obvious that any feature selection
method is desirable within the context of spam filtering, or that
it is meaningful to study feature selection separately from classi-
fier construction (cf. [54]). This view appears to be unique to the
spam filtering domain, stop-word and rare word elimination are stan-
dard approaches in IR, while statistical feature selection methods are
the subject of much attention in general text classification research
(cf. [153]).

In abstract terms, the feature selection problem may be character-
ized as that of finding the best subset of n features, for some definition
of best. Primary considerations in defining best include the number
n’ < n of features, the effectiveness of the classifier ¢(x’), where 2’ is
the feature vector with dimensions corresponding only to the selected
features, and the tractability of an algorithm to effect the selection.
If best is characterized by a formula or test outcome, a straightfor-
ward but prohibitively inefficient approach is to examine all 2" subsets
and pick the best. More commonly, greedy heuristics are applied that
identify features in decreasing order of some characterization of their
value, stopping at some suitable value of n’. Sebastiani [153] details
several heuristics relying on statistics like term frequency and informa-
tion gain. Regardless of the particular statistic, selecting the best over
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a set is a challenge when the set is dynamic, as in adaptive and on-
line filtering. Trivial approaches to feature selection, such as stop-word
elimination, rely on fixed rules and are hence easy to apply in an on-line
situation.

3.3 Probabilistic Classifiers

A probabilistic classifier computes an estimate Prob(m € spam|Z(m) =
x) of the probability that a given message m, represented by z, is spam.
This estimate may be used to define a soft classifier ¢(m) = Prob(m €
spam|Z(m) = x) or a hard classifier ¢(m) = Prob(m € spam|Z(m) =
x) >t for some fixed threshold 0 < ¢ < 1.

Z(m) is typically a vector of features z = zyx9---x,. For each z;,
a separate estimate p; may be computed for the probability that m is
spam, considering only x; as evidence. These estimates are then com-
bined into an overall estimate that best reflects the evidence afforded
by x as a whole.

When estimating and combining probabilities, it is often convenient
to recast them as odds or log-odds:

Odds(z) = %
1
Prob(z) = 15 0dds(2)

LogOdds(z) = logit(Prob(z))

logit(p) = log <1p>

-p

L 1
lOglt l(q) = m

In the following discussion, we abbreviate Z(m) as ™ (or simply
z when m is understood) and Z(m;) as xl?.
3.3.1 Probability Estimates from Categorical Features

While the values of a binary feature z; : {0,1}, have no intrinsic mean-
ing, x; = 1 typically represents the presence of some lexical feature (e.g.,
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a word) in m while z; = 0 indicates its absence. The probability that
m is spam given x; = k is easily estimated as the fraction of messages
with z; = k in the training set T

[m]

Tz =

Prob(m € spam|z; = k) = [{m € Tz [ ]T} N spam|
|{m € T|z;™ = k}|

it is convenient to recapitulate this estimate in terms of odds:

T)2™ = k} n
Odds(m € spam|z; = k) = [{m € T|x; } N spam)|

{m e T]acgm] =k}N non—spam].

For example, if the word “money” occurs in 100 spam messages and 5
non-spam messages, the odds that a particular message m containing
“money” is spam may be estimated to be Odds(m € spam|z; =1) =

% = ?. The same estimate, expressed as a probability is Prob(m €
spam|x; =1) = ﬁ—%o =0.952. The value k =1 is not particularly spe-

cial, assuming T consists of, say, 1000 spam and 1000 non-spam
messages, we may deduce that 900 spam messages and 995 non-
spam messages have the x; =0, so the odds of message not contain-
ing “money” being spam are Odds(m € spam|x; =0) = % = %, ie.,
nearly even odds. Intuitively, the non-occurrence of “money” con-
tributes little to solving the filtering problem, for this reason spam
filters often ignore this information.

The ratio § of the number of spam to non-spam messages a good
odds estimate if these numbers, a and b, are sufficiently large. If they
are small, the estimates will be unreliable due to chance, and if either
or both is zero, the resulting odds are %, % or %,
sensible estimate. A simple approach to mitigate this problem is to

none of which is a

add small positive constants a and 8 to the numerator and denom-
inator, respectively, that is, to use ‘Zi—g as the odds estimate. In the
case of a =b =0 this yields an estimate of % while for large a and b
being indistinguishable from §. Typically, o = 8 = 1, this choice will be
revisited when we consider the combination of estimates from various
features.
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3.3.2 Probability Estimates from Continuous Features

A direct way to estimate spam probability from a real-valued feature
x; : R is to transform its value to a binary value b; : {0,1} by comparing
to a threshold

1 x;, >t
b =
0 xigt

and to estimate Odds(m € spam|b; = k) as described in the previous
section. While a real value, like a discrete value, has no intrinsic mean-
ing, features may be engineered so that a larger value of x; indicates
higher odds that m € spam. In other words, that x; is itself a soft clas-
sifier. And b; is the corresponding hard classifier. An n-ary categorical
value d; : {0,1,...,n — 1} may be computed using n bins delimited by
n — 1 threshold values
n—1 th_o<wx;
4=y 1 to<m <ty
0 z; <t

thus effecting a piecewise approximation of the odds implied by the
continuous value ;.

The principal drawback to this approach is that as n increases, the
number of messages with d; = k for any particular k decreases, and
the odds estimates become less reliable. An alternative approach is to
define a transformation f:R — [0,1] such that Prob(m € spam|z; =
k) =~ f(x;). If ; is, in effect, the result of a probabilistic classifier, f is
trivial.

Parametric models may be used instead of simple counting to model

mespam menon-spam .

E pam] ,E Paml  por example, if a
Gaussian distribution is assumed, the four parameters p; s, 05, fin,
[mespam]
i

the distributions of x and z
Oimn, the mean and standard deviation for x for m € spam
and m ¢ spam, respectively, fully characterize the distributions. Given
these parameters,

~ Ng - g(ﬂi,San,sak)
Ny, - g(,ui,nyo'i,nyk)’

Odds(m € spam|z; = k)
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where Ng and N, are the number of spam and non-spam in 7', and g
is the instantaneous Gaussian (normal) distribution at & [92].

An alternative approach [114] assumes that x; is the result of a soft
classifier and uses the tail of the cumulative empirical distribution to
estimate

[m] <
Odds(m € spam|z; = k) = w
[{m|a;™ > kY|

3.3.3 An Example

We illustrate the processes using two features derived from the TREC
2005 Public Spam Corpus [40]. Our features are chosen to harness the
knowledge that all the messages in the corpus were delivered to individ-
uals at one particular organization and that the organization’s name —
Enron in this instance — might have different prevalence in spam
and non-spam messages. Our two features simply count the number of
occurrences of the character sequence enron in the header and in the
body, respectively, after converting all letters to lower case. Table 3.1

Table 3.1 Example from TREC 2005 Corpus.

Message tag  true class head:enron  body:enron

016/201 spam 12 0
033/101 spam 11 0
050/001 spam 10 0
066,/186 non-spam 7 24
083/101 non-spam 21 0
083/101 non-spam 21 0
100/001 non-spam 27 4
133/101 spam 12 17
148/013 non-spam 22 5
166,/201 non-spam 13 23
183/101 spam 11 0
200/001 spam 14 4
216/201 non-spam 25 2
233/101 spam 13 20
250/001 non-spam 5 0
266,/201 spam 12 0
283/101 spam 13 0

300,001 spam 11 22
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presents these attributes for 18 messages selected from the corpus, 10
of which are spam and 8 of which are non-spam.

As discrete values indicating the presence of enron in the respective
message components, these features are of limited use. enron occurs in
every header, and therefore its presence yields no information beyond
the ratio of spam to non-spam in the sample. enron occurs in the bodies
of 4 spam and 5 non-spam messages yielding a 4:5 estimate of the odds
that a message whose body contains enron is spam. Similarly it does
not occur in the bodies of 6 spam and 3 non-spam message, yielding
a 2:1 odds estimate for such messages. These estimates are compared
with our best estimate of the true values — the gold standard computed
over the entire corpus — in Table 3.2.

Table 3.3 shows the result of splitting the values of head:enron
into three discrete ranges: [0-9], [10-19], [20-30], and the effect of two
choices of o and (. Values in the center range clearly predict spam,
while extreme values predict non-spam. Table 3.4 shows the predictions
made for each possible value of head: enron assuming a Gaussian distri-
bution with parameters computed from the sample: us = 11.9, o5 = 1.2,
tn = 17.6, 0, = 8.3. The model aptly estimates Prob(m € spam|head :
enron = k) for small values of k, but dramatically underestimates it for
larger values. These larger values are fairly rare, mitigating the effect
of the underestimate, and even the underestimates will yield a correct

Table 3.2 Sample vs. gold standard spam estimates.

Training Gold standard

Feature Freq. Prob Freq. Prob
head:enron > 0, 1 0.56 0.9999 0.57
head:enron = 0, 0 0.5 0.0001 0

body:enron > 0, 0.5 0.44  0.62 0.45
body:enron = 0, 0.5 0.67 0.38 0.77
No feature (all messages) 1 0.56 1 0.57

Table 3.3 Discrete range feature estimates.

Training Gold standard
Feature Freqq a=p3—-0 a=p=1 Freq. Prob
0 <head:enron< 10 0.11 0 0.25 0.18 0.05
10 <head:enron< 20 0.61 0.91 0.85 0.74 0.75

20 <head:enron< 30 0.28 0 0.14 0.05 0.19
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Table 3.4 Sample vs. gold standard spam estimates, Gaussian model.

Training Gold standard

head:enron  Freq. Prob Freq. Prob
5 0.06  0.0000 0.00 0.0000
6 0 0.0000 0.01 0.0705
7 0.06  0.0017 0.08 0.0000
8 0 0.0311  0.05 0.0409
9 0 0.2315 0.03 0.1767
10 0.06 0.5880 0.07 0.6191
11 0.17  0.7735 0.28 0.8366
12 0.17 0.8049 0.19 0.7343
13 0.17  0.7158 0.09 0.7838
14 0.06 0.4371 0.04 0.7269
15 0 0.1079 0.02 0.6321
16 0 0.0094 0.01 0.4687
17 0 0.0004 0.01 0.4162
18 0 0.0000 0.01 0.4838
19 0 0.0000 0.01 0.3539
20 0 0.0000 0.01 0.5745
21 0.11 0.0000 0.01 0.4236
22 0.06  0.0000 0.01 0.4008
23 0 0.0000 0.00 0.5281
24 0 0.0000 0.00 0.1026
25 0.06  0.0000 0.02 0.0114
26 0 0.0000 0.00 0.0629
27 0.06  0.0000 0.00 0.0026

classification more often than not. Nevertheless, there is plenty of room
to improve the model.

3.3.4 Combining Probability Estimates

We consider the problem of constructing the estimate Prob(m €
spam|x = k) given p; =Prob(m € spam|z; =k;) for all 1<i<n,
where k = (koky - - ky). We consider the special cases n =0, n =1, and
n = 2, and their generalization to n > 2.

n = 0 denotes the empty vector, so the estimate, which we denote
(), reduces to Prob(m € spam|x = ()); that is, Prob(m € spam) since
x = () is a tautology. x may be considered a discrete feature with only
one possible value, the empty vector. Using the method described in
Section 3.3.1, we compute Odds(m € spam|z = ()) = [TOspam] -~y

~ |TNnon-spam|’
ratio of spam to non-spam in the training set.
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n =1 is also trivial; we have Prob(m € spam|z = (k1)) = Prob(m €
spam|zo = ko) = p1.

n = 2 is more problematic; there is no general method of combining
p1 and po into a common estimate without considering the evidence
x1 and xo and T from which they are derived. Under the assumption
that zg and x; occur independently in both spam and non-spam, we
may combine p(), p1 and py using Bayes rule to compute a combined
estimate p, thus forming a naive Bayes classifier, which is conveniently
expressed using the logistic transform:

logit(p) = logit(p1) + logit(p2) — logit(po),
i.e. logOdds(m € spam|x) = logOdds(m € spam|z)
+1ogOdds(m € spam|z)
—1logOdds(m € spam).

The naive Bayes assumption seldom holds in practice, the word
“sildenafil,” for example, is far more likely to be found in email mes-
sages — spam and non-spam alike — that also contain the word “Via-
gra.” Invalid assumptions aside, naive Bayes classifiers are commonly
used because they are simple and perform adequately as hard classifiers
with a threshold ¢ = 0.5, even if their probability estimates are far from
accurate [51].

A contrasting assumption is that x; and x5 are dependent, for
example, that the presence of “sildenafil” or “Viagra” are both indi-
cators of spam, but whether one, or the other, or both occur in a
particular message is of no consequence. In short, a message contain-
ing “sildenafil” and “Viagra” is no more or less likely to be spam
than a message containing either term alone. Under this assumption
p1 and p2 may be averaged, as they are both estimates of the same
quantity and differ only in estimation error. Arguably the most apt
form of average is a weighted average under the logistic transforma-
tion: logit(p) = (1logit(p1) + Palogit(pe) for some (1 + B2 =1, chosen
to reflect the relative estimation error inherent in p; and p,. Absent
such an estimate, the choice 81 = (B = % yields an unweighted aver-
age, reflecting the (reasonably robust) assumption that the estimation
errors are equal.
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Table 3.5 Combining estimates.

Prob
Feature combination  Logit avg. Naive Bayes  Gold std.
0 <head:enron< 10 0.45 0.36 0.14
body:enron =0
0 <head:enron< 10 0.33 0.16 0.03
body:enron > 0
10 <head:enron < 20 0.77 0.90 0.86
body:enron =0
10 <head:enron < 20 0.66 0.76 0.65
body:enron > 0
20 <head:enron < 30 0.36 0.21 0.40
body:enron=0
20 <head:enron < 30 0.25 0.08 0.12

body:enron > 0

Table 3.5 compares the two methods using all combinations of val-
ues for the two discrete features in our running example. We see that
averaging tends to yield conservative results, closer to p(y = 0.55, while
those due to naive Bayes are more extreme. For some examples, aver-
aging appears to yield the better estimate, for others, naive Bayes.

Reality! lies somewhere between these two assumptions. A common
model — the logistic model — subsumes both:

logit(p) = Bologit(p()) + Bilogit(p1) + Balogit(pz).

The naive Bayes assumption is modeled by Gy = —1,061 =82 =1,
the dependent evidence assumption by Gy =0, 81 + B2 = 1. More gen-
erally, one may choose [y, 31,82 so as to optimize some utility or cost
measure for the resulting classifier. The most common utility measure
is the likelihood of the training data, which may be optimized using
logistic regression. This method of deriving a classifier is known as
mazimum entropy or logistic regression.

Logistic regression generalizes to any n > 0:

logOdds(m € spam|x) = Bologit(p()) + Zﬁilogit(pi).
=1

1=

LOr, at least, a closer approximation of reality.
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The naive Bayes assumption is modeled by Sy =1 —n, 5; =1(1 <
i < mn) while the dependent evidence assumption is modeled by [y = 0,
2icBi=1.

It is unnecessary to transform discrete-valued features to probability
estimates for the purpose of logistic regression. Instead, a feature x; :
{k1,ka,...,k;} may be interpreted as [ distinct binary features

1 (:L’Z = kj)
0 (.%'Z 7é kj) '

In this case, each coefficient g; ; = B;Prob(m € spam|z; = k;) in the

L§ 154,250+, L5 1, where Tjj = {

model. Commonly, z; is binary-valued and w;¢ is discarded for the
reasons stated in Section 3.3.1, so x; is effectively replaced by x; 1.

3.3.5 Practical Considerations

The choice of feature representation and combining method may have a
dramatic effect on the simplicity and efficiency of the resulting spam fil-
ter, particularly in on-line deployment. We have previously mentioned
that feature transformations such as tf-idf and statistical feature selec-
tion are difficult to reconcile with adaptive classifiers, probability-based
interpretations that model global distributions entail similar difficul-
ties. For this reason, discrete features that may be derived from indi-
vidual messages, independent of others in the training set, are more
amenable to on-line settings. In general, the literature shows that these
simple feature representations work for spam filtering as well as, or
better than, more complex and less adaptive ones based on global
statistics.

Naive Bayes filters for discrete-valued features are easily imple-
mented. Each message is converted to its feature representation, and a
dictionary is used to count the number of spam and non-spam messages
containing each feature value. A message may be classified by retrieving
the counts for the feature values it contains and applying the formula
to yield a hard or soft classification. New messages may be added to
the training set by updating the relevant counts. Previously unseen
features or feature values pose no problem to an on-line naive Bayes
filter; they may simply be inserted into the dictionary, with associated
counts of 0.
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Self-training — a simple but effective method of semi-supervised
learning — may be effected by classifying a message, and then adding
the message and inferred classification to the training data. Assuming
the filter is accurate, it will be much more likely to self-train correctly
than not, generally increasing the accuracy of the filter. But there is
also the risk that incorrect self-training, albeit rare, might cause the
filter to go astray, thus “blessing” a particular kind of spam as non-
spam, or vice versa. Should the user report a misclassification error
to the filter, the effect of incorrect self-training is easily reversed by
subtracting from the relevant counts.

Provided the coefficients are fixed, a filter using a logistic model is
as easy to implement and update as a naive Bayes filter. Many filters
labeled “Bayesian” are in fact not Bayesian at all, but derived from
a technique dubbed x? by Robinson [136] which combines estimates
using geometric means of separate (but not necessarily independent)
estimates for Prob(m € spam) and Prob(m € non-spam) — equivalent
to the logit average of the presented here.

Logistic regression is traditionally viewed as a batch algorithm.
Indeed, computing the (§; so as to maximize the likelihood of the train-
ing examples requires that the entire training set be examined. Logistic
regression is a standard tool for statistical analysis [87], and sophisti-
cated implementations are found in all major statistical software pack-
ages like SPSS, SAS, Stata, S and R, as well as the data mining toolkit
Weka [192]. Stand-alone versions are available as well, notably LR-
TRIRLS [100] which was designed specifically for building classifiers for
large feature spaces. It is possible to use these tools in conjunction with
batching and a sliding window, but effectiveness is compromised [36].

Goodman and Yih [68] describe a very simple iterative descent
method for performing logistic regression, paraphrased in Figure 3.1.
While this method converges more slowly than the sophisticated meth-
ods mentioned above, its simplicity makes it particularly attractive
for both batch and on-line filtering. In the case of batch filtering, the
algorithm may be applied to huge datasets (the author has found it
effective on a dataset with 100 million 5-valued features). In the case of
on-line filtering, it is attractive because the optimal solution for train-
ing set T is very nearly optimal when T is augmented by one message:
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Input:
Set T': M of training examples
m € T represented by z!™ = (1 1:[1m]$[2m] . x%n])
Labeling label : T — {0,1}
Rate parameter ¢
Output:
- z[™ is the maximum likelihood estimate of
Prob(label(m) =1) over m € T
Method:
B (0--0)
repeat until convergence:
formeT
let p =

1
1—&-6*/@'“”[”1]

B — B + (label(m) — p) - 6 - zl™

Fig. 3.1 Gradient descent logistic regression.

T «— T U {m}. For practical purposes, note Goodman and Yih, it suf-
fices to apply the gradient descent step only to the new message m.
Under this assumption it is unnecessary to retain the messages in T,
the only persistent state required by the classifier is the coefficient vec-
tor (Bofr -+ Bn)-

Self-training is easily effected using gradient descent, however, the
effects of incorrect self-training are more difficult to undo. Training
the classifier again with the same message and the corrected label is
the only efficient correction method of which we are aware.

3.4 Linear Classifiers

A linear classifier views the feature vector z[™ for a message m
as a point in n-dimensional space, where n is the number of fea-
tures. The classifier consists of a vector of coefficients 5 = (8152 n)
and a threshold t. The equation §-x =t defines a hyperplane that
divides the space into half-spaces. All points on one side of the hyper-
plane (8 - 2™ > t) are classified as spam while the ones on the other
side (0 - zm < t) are classified as non-spam. -z =t is a separating
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hyperplane if ¥ pespamB - 2™ > ¢ and Vienon-spamB * z™ < t. A set of
messages is said to be linearly separable if there exists a separating
hyperplane for the set. The logit transform renders the probabilistic
classifier developed in the previous section an example of a linear clas-
sifier. In this section, we describe a geometric interpretation and several
construction methods.

For convenience, we limit our illustrations to the case of n =2; it
should be kept in mind that typical spam filtering applications involve
many more features, and hence dimensions. Figure 3.2 shows the vec-
tor space representation for the 18 messages in our running exam-
ple. The z-axis corresponds to the head:enron feature transformed
using the Gaussian model (cf. Table 3.4). The y-axis corresponds to
the body:enron feature represented as a simple count. The diagonal
line is a separating hyperplane because all spam messages fall to one
side and all non-spam to the other. As such, it is a perfect classifier —
at least for the sample data! Figure 3.3 shows that the same line is
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Fig. 3.2 Separating hyperplane.
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Fig. 3.3 Linearly inseparable sample.

not a separating hyperplane for a larger sample from the same source,
indeed, none exists. Still, most spam lies on the spam side of the line
while most non-spam lies on the other side. So the line is a reasonable
classifier. But is it the best linear classifier within this vector space?
And how may it be chosen using only the training data? The answer
depends on the definition of best.?

If the points are linearly separable, there are, in general, an infi-
nite number of separating hyperplanes. Any linear combination of the
extreme curves shown in Figure 3.4, provided it has positive coeffi-
cients, will itself separate spam from non-spam. It is not apparent that
the best classifier is a separating hyperplane, even if one exists. If one
were to assume that the non-spam (0.72,23) were an outlier — per-
haps a mistake in the training data — one might reasonably choose
the vertical separator in Figure 3.5, which reflects the assumption that

2 At this point, we adopt the definitions of best inherent in the classification algorithms of
interest, their appropriateness within the context of spam filtering is addressed in Section 4.
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Fig. 3.4 Best separating hyperplane?

the second feature has no real effect. Hindsight (i.e., Figure 3.2) tells us
intuitively that our original separator was more appropriate, however,
we are concerned here with justifying the choice based on the training
data alone.

Figures 3.2 and 3.5 represent two competing views of what consti-
tutes the best classifier:

® One which correctly classifies all examples while maximizing
the distance from the nearest example to the hyperplane.

® One which allows one or more examples to be misclassified
while increasing the distance to the rest.

3.4.1 Perceptron Algorithm

The perceptron algorithm iteratively finds a separating hyperplane —
any separating hyperplane, if one exists — by incrementing or decre-
menting the weights for every example on the wrong side (see
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Fig. 3.5 Ignoring one point.

Figure 3.6). The algorithm ignores correctly classified examples. If the
examples are linearly separable, the perceptron converges in a finite
number of steps, otherwise it fails to terminate. For practical purposes
it is sufficient to stop training after some time, under the assumption
that a good, if not optimal in any sense, classifier has been found. The
perceptron is attractive for spam filtering because it is simple, incre-
mental, and adaptive.

The margin perceptron algorithm (Figure 3.7, cf. [152]) adds margin
and rate parameters 7 and § which effect training on near-misses as well
as errors, so as to bias the method to prefer higher margin separators,
where the margin is defined to be the distance from the hyperplane to
the nearest example.

3.4.2 Winnow Algorithm

The Winnow algorithm (cf. [158]) applies only to binary attribute vec-
tors and considers only positive evidence, that is, it computes a weight
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Input:
Set T': M of training examples
m € T represented by z!™ = (1 1:[1m]x[2m] . x%n])
Labeling label : T — {—1,1}
Output:
If linearly separable, 8 such that
B -zl > 0 iff label(m) = 1
else fails to terminate
Method:
B (0--0)
while 3,,e76 - 2™ - label(m) < 0
B — B+ x - label(m)

Fig. 3.6 Perceptron learning algorithm.

Input:
Set T': M of training examples
m € T represented by z!™ = (1 1:[1m]x[2m] . x%n])
Labeling label : T — {—1,1}
Margin and rate parameters 7 and §
Output:
If linearly separable, 8 such that
B -zl > 0 iff label(m) = 1
else fails to terminate
Method:
B (0---0)
while 3,,e78 - zl™ - label(m) < T
B—pB+x-p-label(m)

Fig. 3.7 Perceptron with margins.

vector § with strictly positive elements. If the data are linearly sep-
arable, it will find 8 such that 3 - z[™ > 1 iff label(m) = 1. Like per-
ceptron, Winnow trains on errors, and can also be adapted to train
on near misses. Winnow uses multiplicative, in contrast to percep-
tron’s additive, reinforcement for 5. More specifically, elements of
corresponding to features present in the training sample are multiplied
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by a promotion factor o > 1 when - z[™ > 1 and label(m) = 0, and
by a demotion factor 0 < 3 <1 when §-2™ <1 and label(m) = 1.
Since Winnow is asymmetric, it is common to combine the results of
two Winnow methods — each trained independently, one predicting
label(m) =1 and the other predicting label(m) =0 — into an overall
prediction.

Siefkes et al. ﬁ[158] report that it is useful to normalize the result

'I‘m

by substituting for 8- x™, where n is the number of nonzero

n
features.

3.4.3 Support Vector Machines

A support vector machine (SVM) directly computes the separating
hyperplane that maximizes the margin or distance to the nearest exam-
ple points. Several points will be at the same distance, these points are
known as the support vectors as the classifier is a linear combination of
them — all other points may be ignored. Thus the SVM would prefer
the solution in Figure 3.2 over the ones in Figure 3.4, with support
vectors of (0,0), (0.72,23) on the non-spam side and (0.72,20) on the
spam side.

In the case of non-separable data, or separable data in which a
few points dramatically affect the solution (e.g., Figure 3.5 or point
(0.72,23) in our training data), it may be desirable to relax the
requirement that all training data be correctly classified. Contem-
porary SVM formulations implement a tradeoff between maximizing
the margin and minimizing the magnitude of training errors. The
tradeoff parameter C' determines the relative weight of the second
objective to the first. C'=0 specifies the pure SVM detailed in the
previous paragraph, C =1 gives the objectives balanced weight, and
is a typical default value, C' = 100 gives the second objective substan-
tial weight, and has been found to be appropriate for spam filtering
(54, 152].

Sculley [150] describes a gradient method for efficient incremental
on-line spam filtering using SVMs. Efficient implementations for batch
SVM computation are available (see Figure 3.8).



3.5 Rocchio Method 397

30 |- Ny

25 - ]

15 - g

10 -

body:enron (Number of occurrences)

ot + 44+ .

1 1 1 1 1 1 1
0 5 10 15 20 25 30
head:enron (Gaussian model)

Fig. 3.8 Untransformed features.

3.5 Rocchio Method

The Rocchio classifier derives from Rocchio’s method to harness rele-
vance feedback in information retrieval, for which the objective is to
rank documents by the estimated probability that they are relevant to
a particular topic. Like Winnow, Rocchio’s method takes into account
only positive evidence; a classifier is formed by comparing the weighted
results of two instances of the Rocchio feedback method: one consider-
ing spam to be the positive class, and one considering non-spam to be
the positive class.

Rocchio’s method typically uses the tf-idf-weighted bag-of-words
model, and cosine as a similarity measure, i.e., similarity(z,y) = %
or, if x and y are always normalized, simply similarity(z,y) = x - y. Let
C be the centroid of all ™ such that label(m) = 1, and C,, be the cen-
troid for all z™ such that label(m) = 0. Similarity(z,C.) represents

the Similarity of = to spam while similarity(xz,C),) represents the
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similarity of x. A hard classifier for m is effected by comparing
the weighted difference between these measures to a threshold t:
similarity(x,Cs) — a - similarity(z,Cy) > t. That is, 8 - x > t, where
B=Cs —a-Cy,. Joachims [90] argues that Rocchio classifiers are
uncompetitive for general text classification, and we are unaware of
any results that contradict this conclusion within the context of spam.
Sebastiani [153] provides further details.

3.6 Nearest Neighbor Methods

A nearest neighbor or memory-based classifier [156] computes the dis-

/
m'€T] for

tance between the feature vector 2™ and several examples z!
which label(m’) is known. In the simplest case, the class of m is esti-
mated to be that of the nearest example, i.e., label(m) = label(m’),
where m' = argmax,,,, 2™ - 2™ . A simple variant is k-nearest neighbor
(kNN) in which, for some fixed k, the k most similar examples are
identified, and the majority class among these examples is assigned
to x. Or some threshold 0 <t < k may be chosen, and x deemed to
be spam if n > t, where n is the number of among the k that repre-
sent spam. Weighted nearest neighbor weights each of the k nearest
examples by its similarity to x and compares the sum of the weights
to a threshold. Several authors consider the use of clustering and
kNN methods for spam filtering, but none report strong performance
[6, 47, 143, 144, 197].

Duplicate or near duplicate detection [97, 98] is a special case of
nearest neighbor in which similarity(x,y) yields a binary result rather
than a distance. Fingerprinting and signature files are names given
to methods in which a database D of known spam messages is main-
tained and queried to determine, for a message to be classified, whether
similarity(z™, ™) = true for some m’ € D. The motivation for this
approach is that spammers often send vast numbers of similar messages
which may, after the first few, be recognized as spam. The challenges
include efficient implementations of D and defining similarity so that
it cannot easily be defeated by spam messages that are continuously
perturbed so as to defeat duplicate detection.
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3.7 Logic-Based Methods

Decision rules use logic to express the interactions among features.
Decision rule inference systems like RIPPER [30] compete with decision
trees in terms of efficiency and effectiveness.

Decision trees like C4.5 [132] successively split the training data
(and, hopefully, the data to be classified) according to the value of one
feature at a time, eventually arriving at a subspace populated exclu-
sively by members of one class: spam or non-spam. In the worst case,
such a tree may be of exponential size. The trick is to choose the order
in which to examine the features and to prune the tree so as to par-
tition the data with many fewer nodes. Decision stumps, consisting of
just one node, represent the extreme case. Heuristics to do this typically
make similar assumptions to those used in feature selection, ordering
the dimensions by some measure of the degree of evidence afforded.
Typically, these pruned decision tree classifiers are rather weak clas-
sifiers, they may be improved substantially by ensemble methods like
bagging and boosting which combine the results of a large number of
randomly generated classifiers [24, 54, 179].

As for feature selection, incremental and adaptive methods for rule
inference and tree construction remain elusive, particularly in combi-
nation with bagging or boosting.

3.8 Data Compression Models

A data compression model D estimates the information content of a
sequence s = s153--- 5, of symbols from a finite alphabet 3. I(sl"™) =
—loga(Prob(s = s[™)) is the information content of the sequence s
representing a particular message m, a lower bound on the number of
bits required to represent m. Probp(s = s"™) is the likelihood of s!™
under D, and Ip(si™) = —logs(Probp(s = s™)) estimates I(s/™). Dy
models s better than Dy if Ip, (s!™) < Ip,(sI™). For data compres-
sion, the objective is to find the best possible model so as to minimize
the encoded length over all s of interest.

For classification, we construct two models: Dgpqm and Dypon-spam
which model spam and non-spam, respectively. The classifier is
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predicated on the assumption that Dgpy,, will model glmespam] ¢
ter than Dyon-spam and that Dyon-spam Will model glmenon=spam] 1ot er
than Dgpqpm. The hard classifier

C(m) - true (IDSP‘“" (S[m]) < iDnon—SPam (S[m]))
| false otherwise

follows from this definition, as does a soft classifier

c(m) = Ip (™) = D (s7™).

non=spam

The soft classifier is amenable to probabilistic interpretation. Define
the correct model for m to be

plml

{ Dspam (m € spam)
Dron-spam (M € non-spam)

D,y (81™) = —log(Prob(s = ™| DM = D))
IDm_mm(s[ml) = —log(Prob(s = s™| D" = D, 0-spam))

P =g pm =p,.
e(m) = log< rob(s = s pam) )

Prob(s = S[m]‘D[m] = Dnon—spam)

Prob(s = sl™l|m € non-spam)

( Prob(s = s™|m € spam) )
= log

_ Odds(m € spaml|s = s™)
B Odds(m € spam) ’

logOdds(m € spam|s = ™) = logOdds(m € spam) + c(m).

That is, given an estimate of the prior probability p that m € spam,
data compression models estimate the probability of m being spam to
be logit—!(logit(p) + c(m)).

3.8.1 Sequential Models

Sequential compression models like prediction by partial matching
(PPM) [29], dynamic Markov compression (DMC) [38], and context-
tree weighting (CTW) [190], process a message sequentially, in effect
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constructing a separate model Dy, for each prefix syss--- sy of its input
to compute Ip, (Sg+1). The information content of the message is

Ip(s) = ZIDi_l(Si)~
i=1

For spam filtering [16], we form two sequences S and N by concate-
nating all the spam messages in 1" and all the non-spam messages in
T, respectively. Using the same method, two models Dg and Dy are
constructed yielding Ip(S) and Ip(INV), respectively. A message m to
be classified is concatenated to S and to N and new models Dg,, and
DN, are constructed yielding Ip(Sm) and Ip(Nm). Using Bayes’ rule,
we deduce

Ip,yun (m) = Ip(Sm) — Ip(S)
m) = Ip(Nm) — Ip(N)

non-spam (

Ip
C(m) = IDnon—spam - IDSPCL””'

In practice it is unnecessary to compute Dg,, and Dy, from
scratch. Sequential compression models efficiently construct Dg,, and
Dy, from stored representations of Dg and Dy. Incremental training
is easily effected by replacing Dg by Dg,, when m € spam and Dy by
Dy, when m € non-spam. Incorrect self-training is not easily reversed.

Figure 3.9 illustrates DMC applied to the To: fields? of the 18 mes-
sages in our running example, in their natural order (cf. Table 3.1). The
first column of Figure 3.9 shows the true class of the message, the second
¢(m), the third shows the To: field of the message. Each character z; is
colored to indicate its “spamminess” within the string: bold indicates
spam (¢;—1(x;) > 0), while italic indicates non-spam (¢;—1(z;) < 0) and
normal indicates neither (¢;—i(x;) ~ 0). DMC colors the first message
Grey, as there are no previous messages so the spam and non-spam
models are identical. The next two messages are classified (correctly) as
spam, which is perhaps not surprising as there are no non-spam exam-
ples with which to compare. Indeed the fourth message — the first

3For brevity of illustration, the method has been applied only to the To: field extracted
from the message. Superior results are achieved if the method is applied to the whole
message, or to a fixed-length prefix of the message.
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To: emclaug@enron.com

To: Skean@enron.com

To: <joydish@bareed.alburaq.net>

To: “Shapiro, Richard” <Richard.Shapiro@ENRON.com>

To: “Adams, Jacqueline P.” <Jacqueline.P.Adams@ENRON.com>,
To: “Adams, Jacqueline P."” <Jacqueline.P.Adams@ENRON.com>,
To: pete.davis@enron.com

To: KAM.KEISER@enron.com

To: “Abel, Chris” <Chris.Abel@ENRON.com>,

“Moran, Tom” <Tom.Moran@ENRON.com>,

To: ngeb5e@msn.com

To: skean@enron.com

To: pete.davis@enron.com

To: kholst <kholst@enron.com

To: “Scott, Susan M.” <Susan.M.Scott@ENRON.com>

To: mmotley@enron.com

To: kholst@enron.com

To: keith.holst@enron.com
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Fig. 3.9 DMC results on training set.

non-spam — is incorrectly classified. As more examples are learned,
the models are better able to distinguish spam from non-spam. The
last seven messages are correctly classified. The colors of individual
characters reveal that some key indicators of non-spam are:

® quotation marks,
e ENRON in upper case,
® specific names like Adams and pete.davis.

Indicators of spam are:

® enron in lower case,
® upper case sequences other than ENRON,
e variants of the name kholst.

The data compression models used for spam filtering harness the cor-
relation between adjacent symbols in the message. DMC (Dynamic
Markov Compression) uses a bit-wise dynamic Markov model that
incrementally adapts to model longer sequences which occur frequently.
Prediction by Partial Matching (PPM), in contrast, tacitly uses an
n-gram character model (4 <n <8 is typical) for which a suffix tree
representation is more amenable than a feature vector, because it con-
sumes linear space. Context-tree weighting is asymptotically optimal
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under certain theoretical assumptions, but is more complex and does
not appear to yield better results than DMC or PPM.

Methods that employ suffix trees [127], n-gram [28], or language
models [120] rely on similar evidence to that of compression models.

3.9 Meta Classifiers

The methods outlined in this section all estimate the same quantity:
the truth value of the proposition that a message is spam. For the
reasons stated in Section 3.3.4 an average of the estimates is likely to
yield better precision than any single one. The synthesis of classifier
results — which goes by a plethora of names like voting, stacking,
fusion, ensemble, committee, cocktail, and pipeline — finds common
use in spam filtering.

SpamAssassin, for example, combines the results of its 800 tests,
many of which are classifiers in their own right, using a linear classifier
originally constructed by hand, and later using a genetic algorithm,
a perceptron and logistic regression. SpamAssassin’s meta classifier is
constructed off-line using training messages collected by volunteers, and
the resulting weight vector 3 is distributed periodically. In contrast, on-
line meta classifiers [114, 154] employ incremental and adaptive meth-
ods to synthesize the results of other on-line methods.

Bagging [19] and boosting [145] combine several weak classifiers
generated by applying the same construction method to randomly per-
turbed data.



4

Evaluation Methods and Measures

Although email is ubiquitous, privacy issues limit our ability to use
it for comparative study. Email from public sources like mailing lists
may not adequately represent personal or corporate email, either in its
spam or non-spam content. Removing or obfuscating sensitive content
is a formidable challenge, and may dramatically compromise spam filter
effectiveness. Real-time or meta information may be difficult to capture;
its absence may also compromise filter effectiveness. The true labels for
messages — essential to precise evaluation — are difficult to determine,
especially in real-time. In spite of these challenges, more realistic test
collections, along with more realistic laboratory and field test methods
are being developed on an ongoing basis. This section outlines the issues
that might arise and the approaches that might be brought to bear on
the problem of spam filter evaluation. Section 5 describes the major
efforts and results to date.

4.1 Test Corpora

A test corpus is a collection of email messages with an associated gold
standard closely approximating the true classification for some or all of

404
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the messages. In addition, the corpus may be chronologically sequenced.
For the purpose of comparative evaluation, splits may be defined that
separate the email messages into one or more pairs of test and training
sets, or the messages may be used in sequence for on-line evaluation.

Technically, it is a simple matter to capture all the email deliv-
ered to a recipient or a set of recipients. Publishing this email as a
corpus, or using it for field testing, is not so simple. Few individuals
are willing to publish their email, because doing so would compromise
their privacy and the privacy of their correspondents. A choice must be
made between using a somewhat artificial published collection of mes-
sages and using a more realistic collection that must be kept private.
Published collections facilitate comparative evaluation because diverse
methods may be tested under exactly the same circumstances, private
collections facilitate comparison only through experiments run by the
proprietors of the data.

The gold standard represents, as accurately as is practicable,
the result of adjudicating each message in the collection according to
the definition of spam. The gold standard plays two distinct roles in
the evaluation framework. The gold standard is assumed to be truth in
measuring the filter’s error rates. The gold standard is also a source of
training labels. It may be appropriate to bifurcate the gold standard
for these two purposes, while errors are never desirable in evaluating
the filter’s error rates, they may aptly reflect the training data available
to the filter in real-world deployment.

Human adjudication is a necessary component of gold standard cre-
ation. One approach is to ask the email recipient to sort his or her
email, a tedious and error-prone process. Another approach is to have
the recipient use a spam filter, and to report only the errors made by
the filter, assuming that unreported messages were correctly classified
by the filter. This method also has a substantial error rate [42]. A third
party adjudicator — other than the recipient — may also perform the
task.

A bootstrap method can improve both efficiency and accuracy [42].
An initial gold standard G is created using the method above. One or
more filters is run, using Gq for training and evaluation. Each message
for which the filter and Gy disagree is re-adjudicated and, where Gy is
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found to be wrong, it is corrected. The result of all corrections is a new
standard ;. This process is repeated, using different filters, to form
G2, and so on, to Gy. The final gold standard, G,,, may be expected
to have a much lower error rate than that of the adjudicator or any
of the filters alone. Segal [155] investigates the use of uncertainty sam-
pling [107] as a method for efficiently generating gold standard labels.
Graham-Cumming [73] investigates the use of exhaustive volunteer-
based adjudication.

Corpus testing is valuable in that it allows a vast number of filters
and methods to be tested under identical circumstances. It is limited
to the extent that the messages in the corpus are a realistic, timely
sample of real email. It is further limited in that the interaction with
the user and with external resources such as blacklists are difficult to
emulate.

4.2 Real-Time Aspects

The most direct way to capture the real-time features that a filter might
use is to operate the filter in real-time, perhaps using a standard interface
so that a number of filters may be plugged in and tested — either
sequentially or in parallel for the same user (a crossover study design)
or for different users (a randomized controlled trial design). Another
approach is to find existing installations of particular techniques, and to
measure their effect (a case-control design). Practitioners generally rely
on ad hoc methods of evaluation that resemble crossover or case-control
studies, but lack the controls normally associated with scientific
evaluation. To our knowledge no such studies have yet been reported in
the literature; however, CEAS 2007 has launched a live spam challenge
[170], which is a real-time parallel crossover study. In addition, the email
stream and gold standard are captured as a corpus so that the real-time
results may be compared with post-hoc laboratory experiments.

An alternate approach is to collect pertinent real-time information
as part of a test collection, and to reproduce it in a later simulation.
Some of this information, like the time of delivery and message enve-
lope information is easy to capture. Its inclusion in corpora marks
the best practice in simulating real-time aspects after the fact. Other
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information, like the state of external servers (DNS, blacklists, and
the like) is more problematic. If the exact information that might be
queried is known, it might also be collected and stored with the cor-
pus. However, this information that is queried is filter-specific, with
the upshot that a historical trace of the entire server content would be
needed. As vast amounts of disk storage are cheaply available, it may
be feasible to capture all the updates to a server so as to be able to
reproduce its state at any particular moment.

A hybrid approach is to collect the information as for a corpus,
but to do so and conduct the experiments within a short time interval,
so that time-dependent factors will not have changed much between
collection and experiment (e.g., [160]).

4.3 User Interaction

The most direct way to capture user interaction effects is through the
user’s actual interaction with the filter, using one of the designs for live
real-time evaluation.! The main difference is that the user’s behavior is
affected by the filter’s behavior, and the filter’s is in turn affected by the
user’s. Blind — even double blind — experiments may be conducted
provided all interaction is through a standard interface, and the filter
itself plugs in through a standard protocol so that neither the user nor
the tester is aware of the filter being tested.

User studies might also be conducted using simulated real-time
message delivery based on a corpus, and a randomized controlled
design. However, the messages would not be specifically addressed to
the subject users, so the validity of their interactions would be question-
able. The complementary approach is to use either actual or simulated
real-time data, and to simulate the user’s behavior. TREC 2005 [40]
simulates an idealized user, who notices and immediately corrects any
filter errors. Any number of other user interactions may be modeled as
simulated within the TREC design. TREC 2006 [33] simulated delayed
feedback so as to model the user’s reading mail only occasionally. Fur-
ther experiments may be designed to model incomplete and inaccurate

I However, the most powerful design — the parallel crossover study — would not be
amenable because the user could interact with only one filter at a time.
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feedback, with model parameters estimated so as to approximate a
range of human behaviors. Separate experiments may be designed to
validate these models.

The CEAS design, being real-time, requires real-time construction
of a gold standard for the purpose of simulating user feedback. It is only
necessary for the real-time gold standard to be accurate enough and
timely enough to reasonably simulate user behavior. This affords ample
time for a panel of adjudicators to employ several iterations of the batch
or uncertainty sampling techniques. Further post-hoc adjudication may
be effected for the purpose of evaluation.

4.4 Sender Interaction

Evaluation of filters involving sender interaction encounter an addi-
tional challenge over and above those arising from user interaction.
The potential that interaction may alter the sender’s behavior is more
acute, as the sender is likely to be uncooperative or even adversarial.
Furthermore, it is possible to observe the sender’s behavior only from
the perspective of the recipient.

The tradeoffs in experimental design between live testing and simu-
lation are affected in the following ways. First, a user typically interacts
with many different senders, whose behavior must be modeled for eval-
uation. Even a reasonably large study would lack sufficient data from
which to estimate the parameters to model each of the senders.

Estimates of false negative rates are reasonably easy to achieve, as
messages classified as non-spam are delivered to the user and may be
adjudicated using any of the techniques we have outlined previously.
Estimates of false positive rates are much more difficult to achieve, as
messages classified as spam are often never delivered. Without adjudi-
cation of these non-delivered messages, false positive rates cannot be
measured at all.? Arguments that legitimate senders would necessarily
behave so as to ensure delivery (fpr = 0), without empirical evidence,
are unavailing.

2Furthermore, the value of these techniques cannot be directly compared with others —
even those that do not rely on sender interaction — unless the entire set of sent messages
is available.
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One approach to adjudication is to have the filter capture all
messages for later adjudication. Some filters do so in the course of
their interaction, while others do not. Challenge-response systems, for
example, typically accept and hold the transmitted message pending
response to the challenge. Greylisting systems may also capture the
entire message before returning a soft error to the sender, however,
many do not and modifying them to do so materially changes their
behavior as observed by the s