ENG2200 Electric Circuits

Chapter 10 Laplace Transform

Objectives

- Be able to calculate Laplace and inverse Laplace transform for any function.
- Be able to transform a circuit into the *s* domain
- Know hoe to analyze circuits in the s domain

Laplace Transform

- The idea of any transform is to change from domain A to domain B. Solve the problem in domain B and return again to domain A.
- For example, the phasor domain
- A sinusoidal wave could be represented in the time and phasor domain
- It is easier to solve the problem in the phasot domain

Laplace Transform

Laplace
$$\{f(t)\}=F(s)=\int_{0}^{\infty}f(t)e^{-st}dt$$

Laplace Transform

• The Laplace transform is defined as

$$Laplace\{f(t)\} = F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$

- This is the **one-sided** or **unilateral Laplace Transform**
- The lower limit is 0⁻ What happens before that is included in the initial conditions

Some Important Functions

- The step function u(t)
- The impulse function $\delta(t)$

Laplace Transform Properties		
Operation	f(t)	F(s)
Multiplication	Kf(t)	KF(s)
addition	$f_1(t) + f_2(t)$	$F_1(s) + F_2(s)$
derivative(t)	$\frac{df(t)}{dt}$	$sF(s) - f(0^-)$
2nd derivative(t)	$\frac{d^2f(t)}{dt^2}$	$s^{2}F(s) - sf(0^{-}) - \frac{df(0^{-})}{dt}$
Integral(t)	$\int_0^t f(x)dx$	$\frac{F(s)}{s}$
Translation (t)	f(t-a)u(t-a), a > 0	$e^{-as}F(s)$
Translation (s)	$e^{-at}f(t)$	$\frac{1}{a}F\left(\frac{s}{a}\right)$

Laplace Transform Properties

Operation
$$f(t)$$
 $F(s)$

Scaling $f(at), a > 0$ $\frac{1}{a}F\left(\frac{s}{a}\right)$

derivative(s) $tf(t)$ $-\frac{dF(s)}{ds}$

nth derivative(s) $t^n f(t)$ $(-1)^n \frac{d^n F(s)}{ds^n}$

integral(s) $\frac{f(t)}{t}$ $\int_s^{\infty} F(u) du$

Inverse Laplace Transform—Partial Fraction

• Our focus is on proper rational fraction m≤n

$$F(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$
$$F(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{(s - p_1)(s - p_2) \dots (s - p_n)}$$

- Distinct poles
- Repeated poles
- Complex poles

Distinct Poles

• If all the poles are distinct

$$F(s) = K + \frac{A_1}{(s - p_1)} + \frac{A_2}{(s - p_2)} + \dots + \frac{A_n}{(s - p_n)}$$

$$K = \lim_{s \to \infty} F(S)$$

$$K = \lim_{s \to p_i} [(s - p_i)F(S)]$$

$$f(t) = K\delta(t) + A_1 e^{p_1 t} u(t) + A_2 e^{p_2 t} u(t) + \dots + A_n e^{p_n t} u(t)$$

Repeated Poles

One or more poles are repeated

$$F(s) = \frac{n(s)}{(s-a)^k d(s)}$$

$$F(s) = \frac{A_1}{(s-a)} + \frac{A_2}{(s-a)^2} + \dots + \frac{A_n}{(s-a)^k} + \frac{n(s)}{d(s)}$$

$$A_k = (s-a)^k F(s) \Big|_{s=a} = \frac{n(s)}{d(s)} \Big|_{s=a}$$

$$A_{k-1} = \frac{d}{ds} [(s-a)^k F(s)] = \frac{d}{ds} \left[\frac{n(s)}{d(s)} \right]_{s=a}$$

$$A_{k-i} = \frac{1}{i!} \frac{d^i}{ds^i} [(s-a)^k F(s)] = \frac{1}{i!} \frac{d^i}{ds^i} \left[\frac{n(s)}{d(s)} \right]_{s=a}$$

Distinct Complex Poles

Complex poles

$$F(s) = \frac{n(s)}{\left[(s+a)^2 + \omega^2\right]} d(s) = \frac{n(s)}{(s+a+j\omega)(s+a-j\omega)d(s)}$$

$$F(s) = \frac{A+jB}{(s+a+j\omega)} + \frac{A-jB}{(s+a+j\omega)} + \frac{n(s)}{d(s)}$$

$$A+jB = \left[(s+a+j\omega)F(s)\right]_{s=-a-j\omega}$$

Laplace Transform -- Applications

• The v-I relationship of a capacitor

$$v_c(t) = \frac{1}{c} \int_{-\infty}^{t} i_c(\tau) d\tau$$

$$L\{v_c(t)\} = L\left\{\frac{1}{C} \int_{-\infty}^{t} i_c(\tau) d\tau\right\}$$

$$V_c(s) = \frac{1}{Cs} I_c(s) + \frac{1}{Cs} \int_{-\infty}^{0-} i_c(\tau) d\tau$$

$$V_c(s) = \frac{1}{Cs} I_c(s) + \frac{1}{s} v_c(0^-)$$

$$V_c = \frac{I}{sC} + \frac{V_0}{s}$$

Laplace Transform -- Applications

• The v-I relationship of a capacitor

$$V_{c}(s) = \frac{1}{Cs} I_{c}(s) + \frac{1}{s} v_{c}(0^{-})$$

$$\frac{1}{Cs} I_{c}(s) = V_{c}(s) - \frac{1}{s} v_{c}(0^{-})$$

$$I_{c}(s) = sCV_{c}(s) - Cv_{c}(0^{-})$$

$$I = sCV - CV_{0}$$

Laplace Transform -- Applications

• The v-I relationship of a inductor

$$v_c(t) = L \frac{di}{dt}$$

$$V(s) = L[sI(s) - i(0^0)]$$

$$V = sLI - LI_0$$

Laplace Transform -- Applications

• The v-I relationship of a inductor

$$V = sLI - LI_0$$

$$sLI = V + LI_0$$

$$I = \frac{V}{sL} + \frac{I_0}{s}$$

Example

