
Algorithm AnalysisAlgorithm Analysis
part 1

cse2011

1

IntroductionIntroduction
• What is an algorithm?

–a clearly specified set of simple instructions to be followed to solve–a clearly specified set of simple instructions to be followed to solve
a problem

• Takes a set of values, as input and produces a value, or set of values, as
outputp

–May be specified
• In English
• As a computer programp p g
• As a pseudo-code

• Data structures
Methods of organizing data–Methods of organizing data

• Program = algorithms + data structures

2

IntroductionIntroduction

• Why we need algorithm analysis?Why we need algorithm analysis?
– Writing a working program is not good enough.

The program may be inefficient!– The program may be inefficient!
– If the program is run on a large data set, then the

running time becomes an issuerunning time becomes an issue.

3

Example: Selection ProblemExample: Selection Problem

• Given a list of N numbers determine the kthGiven a list of N numbers, determine the k
largest, where k N.

• Algorithm 1:• Algorithm 1:
(1) Read N numbers into an array
(2) S h i d i d b(2) Sort the array in decreasing order by some

simple algorithm
(3) R t th l t i iti k(3) Return the element in position k

4

Example: Selection Problem (2)Example: Selection Problem (2)

• Algorithm 2:Algorithm 2:
(1) Read the first k elements into an array and sort

them in decreasing orderthem in decreasing order
(2) Each remaining element is read one by one

• If smaller than the kth element then it is ignoredIf smaller than the k element, then it is ignored
• Otherwise, it is placed in its correct spot in the array,

bumping one element out of the array.

(3) The element in the kth position is returned as the
answer.

5

Example: Selection Problem (3)Example: Selection Problem (3)

• Which algorithm is better whenWhich algorithm is better when
– N = 100 and k = 100?
– N = 100 and k = 1?N 100 and k 1?

• What happens when N = 1 000 000 and k =• What happens when N = 1,000,000 and k =
500,000?

6

Algorithm AnalysisAlgorithm Analysis

• We only analyze correct algorithms.We only analyze correct algorithms.

• An algorithm is correctAn algorithm is correct
– If, for every input instance, it halts (i.e., terminates) with the

correct output.

• Incorrect algorithms
– Might not halt at all on some input instances.
– Might halt with other than the desired answer (i.e., the wrong

)answer).

7

Algorithm Analysis (2)Algorithm Analysis (2)

Analyzing an algorithmAnalyzing an algorithm
Predicting the resources that the algorithm

requires.q
Resources include
Memory (space)y (p)
Computational time (usually most important)
Communication bandwidth (in parallel and distributed

computing)

8

Algorithm Analysis (3)Algorithm Analysis (3)
• Factors affecting the running time:

t– computer
– compiler
– algorithm used

i t t th l ith– input to the algorithm
• The content of the input affects the running time
• Typically, the input size (number of items in the input) is the main

consideration.
– sorting problem the number of items to be sorted
– multiply two matrices together the total number of elements

in the two matrices
• And sometimes the input order as well (e.g., sorting algorithms).And sometimes the input order as well (e.g., sorting algorithms).

• Machine model assumed
– Instructions are executed one after another, with no concurrent

operations not parallel computers

9

Analysis ModelAnalysis Model
• It takes exactly one time unit to do any calculation y y

such as
– + , -, * , /, %, &, |, &&, ||, etc.
– comparisoncomparison
– assignment

• There is an infinite amount of memory.
I d id h i d i h• It does not consider the cost associated with page
faulting or swapping.

• It does not include I/O costs (which is usually one orIt does not include I/O costs (which is usually one or
more orders of magnitude higher than computation
costs).

10

An ExampleAn Example
int sum (int n) {

int partialSum;
1 partialSum = 0;
2 0 12 for (int i = 0; i <= n-1; i++)
3 partialSum += i*i*i;
4 return partialSum;4 return partialSum;
}
• Lines 1 and 4: one unit each
• Line 3: 4N
• Line 2: 1+(N+1)+N=2N+2
• Total: 6N+4 O(N)

11

Running Time CalculationsRunning Time Calculations

• Throw away leading constants.Throw away leading constants.
• Throw away low-order terms.
• Compute a Big-Oh running time:Compute a Big-Oh running time:

– An upper bound for running time
– Never underestimate the running time of a programg p g
– The program may end earlier, but never later (worst-case

running time)

12

General Rules for Big-Oh: for loopsGeneral Rules for Big Oh: for loops

• for loops
– at most the running time of the statements inside the for loop

(including tests) times the number of iterations.
• Nested for loopsNested for loops

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

k ++;

– the running time of the statement multiplied by the product of
the sizes of all the for loops.

– O(N 2)O(N)

13

Consecutive StatementsConsecutive Statements

• Consecutive statementsConsecutive statements

for (i = 0; i < n; i++)
a[i] = 0;

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[i] += a[j] + i + j;

– These just add.
– O(N) + O(N2) = O(N2)

14

if – then – elseif then else
• if C then

S1
else

S2
– never more than the running time of the test plus the larger of the running times of

S1 and S2.

if (n > 0)()
for (int i = 0; i < n; i++)

sum += i;
lelse
System.out.println("Invalid input");

15

StrategiesStrategies

• Analyze from the inside out (loops).Analyze from the inside out (loops).
• If there are method calls, analyze these first.
• Recursive methods (later):Recursive methods (later):

– Could be just a hidden “for” loop simple.
– Solve a recurrence more complex.p

16

Worst- / Average- / Best-CaseWorst / Average / Best Case
• Worst-case running time of an algorithm:

– The longest running time for any input of size nThe longest running time for any input of size n
– An upper bound on the running time for any input
 guarantee that the algorithm will never take longer

– Example: Sort a set of numbers in increasing order;– Example: Sort a set of numbers in increasing order;
and the input is in decreasing order

– The worst case can occur fairly often
• Example: searching a database for a particular piece of informationExample: searching a database for a particular piece of information

• Best-case running time:
– sort a set of numbers in increasing order; and the input

is already in increasing order
• Average-case running time:

– May be difficult to define what “average” means

17

ExampleExample

• Given an array of integers return true if theGiven an array of integers, return true if the
array contains number 100, and false
otherwiseotherwise.
– Best case: ?

Worst case: ?– Worst case: ?
– Average case: ?

18

Informal Introduction to O and Informal Introduction to O, and
• Given an unsorted array of

integers, return true if a number k
i i th d f l th i

• Given an unsorted array of
integers, find and return the

i l t d i this in the array and false otherwise.

for(i = 0; i < N; i++)
if (k == A[i])

maximum value stored in the
array.

max = A[0];
for(i = 1; i < N; i++)if (k == A[i])

return (true);
return (false);

for(i = 1; i < N; i++)
if (max < A[i])

max = A[i];
return(max);

• Worst-case running time is O(N).
The alg. has O(N) running time.

()

• Worst-case running time is O(N).
The alg. has O(N) running time.

• Best-case running time is O(1).
 The alg. has (1) running time.

• Best-case running time is O(N).
The alg. has (N) running time.

Th l h (N) i• The alg has (N) running
time.

Running Time of AlgorithmsRunning Time of Algorithms

• Bounds are for algorithms, rather than programs.Bounds are for algorithms, rather than programs.
– Programs are just implementations of an algorithm.
– Almost always the details of the program do not affect the

bounds.

• Bounds are for algorithms, rather than problems.
– A problem can be solved with several algorithms, some are

ffi i t th thmore efficient than others.

20

Example: Insertion SortExample: Insertion Sort

1) Initially p = 1

2) Let the first p elements be sorted.) p

3) Insert the (p+1)th element properly in the list so that
now p+1 elements are sortednow p+1 elements are sorted.

4) Increment p and go to step (3)

21

Insertion Sort: ExampleInsertion Sort: Example

22

Insertion Sort: AlgorithmInsertion Sort: Algorithm

for(int p=1; p < a.size(); p++){for(int p 1; p < a.size(); p++){
int tmp=a[p];
for(int j=p; j>0 && tmp<a[j-1]; j--)

[j] [j 1]a[j] = a[j-1];
a[j] = tmp;

}

 Consists of N - 1 passes
 F 1 th h N 1 th t th l t i For pass p = 1 through N - 1, ensures that the elements in

positions 0 through p are in sorted order
 elements in positions 0 through p - 1 are already sorted

23

 move the element in position p left until its correct place is found
among the first p + 1 elements

Example 2Example 2

To sort the following numbers in increasing order:To sort the following numbers in increasing order:

34 8 64 51 32 21

p = 1; tmp = 8;p p

34 > tmp, so second element a[1] is set to 34: {8, 34}…

We have reached the front of the list. Thus, 1st position a[0] = tmp=8

After 1st pass: 8 34 64 51 32 21

(first 2 elements are sorted)

24

P = 2; tmp = 64;
34 < 64 so stop at 3rd position and set 3rd position = 6434 < 64, so stop at 3 position and set 3 position = 64
After 2nd pass: 8 34 64 51 32 21

(first 3 elements are sorted)

P = 3; tmp = 51;
51 < 64, so we have 8 34 64 64 32 21,
34 < 51, so stop at 2nd position, set 3rd position = tmp,, p p , p p,
After 3rd pass: 8 34 51 64 32 21

(first 4 elements are sorted)

P = 4; tmp = 32,
32 < 64, so 8 34 51 64 64 21,
32 < 51, so 8 34 51 51 64 21,
next 32 < 34, so 8 34 34, 51 64 21,
next 32 > 8, so stop at 1st position and set 2nd position = 32,
After 4th pass: 8 32 34 51 64 21

25

After 4th pass: 8 32 34 51 64 21
P = 5; tmp = 21, . . .
After 5th pass: 8 21 32 34 51 64

Analysis: Worst-case Running TimeAnalysis: Worst case Running Time

• What is the worst input?p

• Consider a reversed sorted list as input.
Wh [] i i t d i t th t d b [0• When a[p] is inserted into the sorted sub-array a[0...p-
1], we need to compare a[p] with all elements in a[0...p-
1] and move each element one position to the right
 i steps.

• Inner loop is executed p times for each p = 1 2 N• Inner loop is executed p times, for each p = 1, 2, , ..., N-
1
 Overall: 1 + 2 + 3 + . . . + N-1 = … = O(N2)

26

Analysis: Best-case Running TimeAnalysis: Best case Running Time
• The input is already sorted in the right order.p y g
• When inserting a[p] into the sorted sub-array a[0...p-1],

only need to compare a[p] with a[p-1] and there is no
data movementdata movement
 O(1)

• For each iteration of the outer for-loop, the inner for-
loop terminates after checking the loop condition once
 O(N) time O(N) time

• If input is nearly sorted, insertion sort runs fast.

27

Insertion Sort: SummaryInsertion Sort: Summary
for(int p=1; p < a.size(); p++){
int tmp=a[p];

for(int j=p; j>0 && tmp<a[j-1]; j--)
[j] [j 1]a[j] = a[j-1];

a[j] = tmp;
}}

• O(N2)()
• (N)
• Space requirement is O(?)

28

Next timeNext time …

• Growth ratesGrowth rates
• O, , , o

• Reading for this lecture: chapter 4

29

