
Algorithm Analysis
part 2

cse2011

1

Good Algorithms! Good Data structures!

• Data structure: a systematic way of organizing
and accessing data

• Algorithm: step by step procedure for
performing a task in a finite amount of time.

• Program: Data structure + Algorithm
• Which algorithm/ds is better?
• We need precise ways to analyze them.

2

Methodology

• Assume that n is the input size (e.g., the size of
the input array to be sorted) of the algorithm

• For each algorithm:
– A function f(n) that characterize its running time is

associated to it.

• We are generally interested in the big-picture
approach.
– Constant factors are generally disregarded.

3

Typical Functions f(n)

1. Constant: 1
2. Logarithm: log n (x=logbn ⇔ bx=n, b>1)

3. Linear: n (one for loop)
4. n-log-n: n.logn
5. Quadratic: n2 (two for loops)

6. Cubic: n3 (three for loops)

7. Exponential: an (a is a constant)

Fast

Slow
4

Example
int findMax (int [] A) {
1 int max = A[0];
2 for (int i = 1; i < A.length; i++)
3 if(max < A[i])
4 max = A[i];
5 return max;
}

n : the size of array A (A.length)
We are just interested to see that findMax grows proportionally to n
Constants are not important …

f(n) ≈ ???
5

Growth Rate

• The idea is to establish a relative order among
functions for large n.

• ∃ c , n0 > 0 such that f(n) ≤ c g(n) when n ≥ n0
• f(N) grows no faster than g(N) for “large” N

6

Asymptotic Notation: Big-Oh

• f(N) is O(g(N)) if
• There are positive constants c and n0 such that
 f(n) ≤ c.g(n) when n ≥ n0

 where c is a real number.

• The growth rate of f(N) is less than or equal to the
growth rate of g(N).

• g(N) is an upper bound for f(N).

7

Big-Oh: Examples

• Let f(N) = 2N2. Then
– f(N) is O(N4)
– f(N) is O(N3)
– f(N) is O(N2) (best answer, asymptotically tight)
– The tighter the Big-Oh, the more accurate the

estimate

• O(N2): reads “order N-squared” or “Big-Oh N-squared”

8

Example
• Show that 7N2 + 10N + 5NlogN + 3 is O(N2).

• Find c and n0 such that when N ≥ n0
 7N2 + 10N + 5NlogN + 3 ≤ cN2

• 7N2 + 10N + 5NlogN + 3 ≤ 7N2 + 10N2 + 5N2 + 3N2
 ≤ 25N2 when N ≥ 1
 So c = 25 and n0 = 1.

• Use the same “technique” for the following

problems.

9

Big Oh: More Examples

)(32
1

2 NONNiN

i
=⋅≤∑ =

10

• (N2 / 2) – 3N is O(N2)
• 1 + 4N is O(N)
• 7N2 + 10N + 3 is O(N2), is also O(N3)
• log10 N = log2 N / log2 10 is O(log2 N) or O(log N)
• sin N is O(1); 10 is O(1), 1010 is O(1) [all of them are constants

regardless of the size of the input]

•

• log N + N is O(N)
• logk N is O(N) for any constant k
• N is O(2N), but 2N is not O(N)
• 24N is not O(2N)

)(2
1

NONNiN

i
=⋅≤∑ =

Math Review: Logarithmic Functions

xdx
xd

aaa
na

aba
a
bb

baab
abiffbx

e

bbb

an

b
m

m
a

x
a

1log
log)(loglog

loglog

log
loglog

logloglog
log

loglog

=

≠=

=

=

=

+=
==

11

Some Rules

When considering the growth rate of a function
using O()

• Ignore the lower order terms and the coefficients
of the highest-order term

• No need to specify the base of logarithm
– Changing the base from one constant to another changes the

value of the logarithm by only a constant factor

• If T1(N) is O(f(N)) and T2(N) is O(g(N)), then
– T1(N) + T2(N) is O(f(N) + g(N)) [if/else statements]
 (or less formally it is max (O(f(N)), O(g(N)))),
– T1(N) * T2(N) is O(f(N) * g(N)) [nested for loops]

12

Big-Omega

• ∃ c , n0 > 0 such that f(N) ≥ c g(N) when N ≥ n0
• f(N) grows no slower than g(N) for “large” N

13

Big-Omega

• f(N) is Ω(g(N)) if
• There are positive constants c and n0 such that
 f(N) ≥ c g(N) when N ≥ n0

 where c is a real number.

• The growth rate of f(N) is greater than or equal to
the growth rate of g(N).

• g(N) is a lower bound on f(N).

14

Big-Omega: Examples

• Let f(N) = 2N2. Then
– f(N) is Ω(N) (not tight)
– f(N) is Ω(N2) (best answer)

– We are still interested in the tightest function!

15

Big-Theta

• The growth rate of f(N) is the same as the growth
rate of g(N)

• f(N) is Θ(g(N)) iff f(N) is O(g(N)) and f(N) is Ω(g(N))

16

Big-Theta: Example

• Let f(N) = N2 , g(N) = 2N2

– Since f(N) is O(g(N)) and f(N) is Ω(g(N)),
 f(N) = Θ(g(N)).

• c1 = 1, n1 = 0
• c2 = ½, n2 = 0

17

An Example of O, Ω and Θ
• Given an unsorted array of integers, return true if a number k is in the

array and false otherwise.

for(i = 0; i < N; i++)
 if (k == A[i])
 return (true);
return (false);

• Worst-case running time is O(N). upper bound
 ⇒The alg. has O(N) running time.
• Best-case running time is O(1). lower bound
 ⇒ The alg. has Ω(1) running time.

⇒We do not have Θ running time for this algorithm.

18

An Example of O, Ω and Θ
• Given an unsorted array of integers, find and return the maximum value

stored in the array.

max = A[0];
for(i = 1; i < N; i++)
 if (max < A[i])
 max = A[i];
return(max);

• Worst-case running time is O(N). upper bound
⇒The alg. has O(N) running time.

• Best-case running time is O(N). lower bound
⇒The alg. has Ω(N) running time.

• ⇒The algorithm has Θ(N) running time.
 19

Typical Growth Rates

20

Some More Rules

• If T(N) is a polynomial of degree k, then
 T(N) is Θ(Nk).

• For logarithmic functions,

T(logm N) is Θ(log N).

• logk N is O(N) for any constant k
 (logarithms grow very slowly)

21

Small-oh

• f(N) is o(g(N)) if

• f(N) is o(g(N))
 if f(N) is O(g(N)) and f(N) is not Θ(g(N))

• g(N) grows faster than f(N) for “large” N.

22

Small-oh: Example

• Let f(N) = ¾ N2 and f(N) be o(g(N)).
– g(N) = N2 ?
– g(N) = N2 log N ?
– g(N) = N3 ?

23

Determining Relative Growth Rates of Two
Functions

1. Using simple algebra (discussed previously)
 Example: which function grows faster?

– f(N) = N logN
– g(N) = N 1.5

2. Using L’Hôpital’s rule

24

Using L' Hôpital's Rule
• L' Hôpital's rule

 If and

 then =

• Determine the relative growth rates: compute

– if 0: f(N) is o(g(N))
– if constant ≠ 0: f(N) is Θ(g(N))
– if ∞: g(N) is o(f(N))
– limit oscillates: no relation

25

)(
)(lim

Ng
Nf

n ∞→)(
)(lim

Ng
Nf

n ′
′

∞→

∞=
∞→

)(lim Nf
n

∞=
∞→

)(lim Ng
n

)(
)(lim

Ng
Nf

n ∞→

Summary of Chapter 4

• Given an algorithm, compute its running time in
terms of O, Ω, and Θ (if any).
– Usually the big-Oh running time is enough.

• Given f(n) = 5n + 10, show that f(n) is O(n).
– Find c and n0

• Compare the grow rates of 2 functions.
• Order the grow rates of several functions.

– Use simple algebra.
– Use L’Hôpital’s rule.

26

Next time …

• Recursion (Chapter 3)

• Reading for this lecture: Chapter 4

27

	Algorithm Analysis�part 2��cse2011
	Good Algorithms! Good Data structures!
	Methodology
	Typical Functions f(n)
	Example
	Growth Rate
	Asymptotic Notation: Big-Oh
	Big-Oh: Examples
	Example
	Big Oh: More Examples
	Math Review: Logarithmic Functions
	Some Rules
	Big-Omega
	Big-Omega
	Big-Omega: Examples
	Big-Theta
	Big-Theta: Example
	An Example of O, and
	An Example of O, and
	Typical Growth Rates
	Some More Rules
	Small-oh
	Small-oh: Example
	Determining Relative Growth Rates of Two Functions
	Using L' Hôpital's Rule
	Summary of Chapter 4
	Next time …

