Algorithm Analysis part 2

cse2011

Good Algorithms! Good Data structures!

- Data structure: a systematic way of organizing and accessing data
- Algorithm: step by step procedure for performing a task in a finite amount of time.
- Program: Data structure + Algorithm
- Which algorithm/ds is better?
- We need precise ways to analyze them.

Methodology

- Assume that *n* is the input size (e.g., the size of the input array to be sorted) of the algorithm
- For each algorithm:
 - A function *f(n)* that characterize its running time is associated to it.
- We are generally interested in the **big-picture** approach.
 - Constant factors are generally disregarded.

Typical Functions *f(n)*

- 1. Constant: 1
- 2. Logarithm: $\log n$ (x=log_bn $\Leftrightarrow b^x=n, b>1$)
- 3. Linear: *n* (one *for* loop)
- 4. n-log-n: *n.logn*
- 5. Quadratic: n² (two <u>for</u> loops)
- 6. Cubic: n³ (three <u>for</u> loops)
- 7. Exponential: aⁿ (a is a constant)

Slow

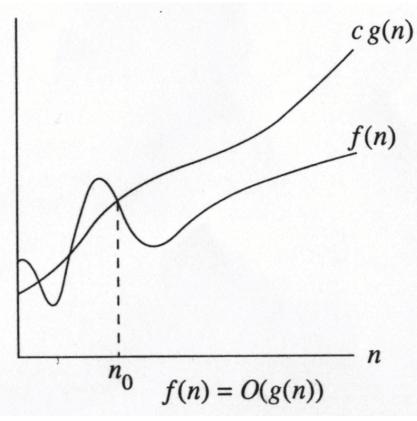
Example

n : the size of array A (A.length)

We are just interested to see that <u>findMax</u> grows proportionally to *n* <u>Constants are not important ...</u>

f(n) ≈ ???

Growth Rate



- The idea is to establish a relative order among functions for large n.
- $\exists c, n_0 > 0$ such that $f(n) \le c g(n)$ when $n \ge n_0$
- f(N) grows no faster than g(N) for "large" N

Asymptotic Notation: Big-Oh

- f(N) is O(g(N)) if
- There are positive constants c and n₀ such that f(n) ≤ c.g(n) when n ≥ n₀ where c is a real number.
- The growth rate of f(N) is *less than or equal to* the growth rate of g(N).
- g(N) is an upper bound for f(N).

Big-Oh: Examples

- Let $f(N) = 2N^2$. Then
 - $f(N) is O(N^4)$
 - $f(N) is O(N^3)$
 - <u>f(N) is O(N²)</u> (best answer, asymptotically <u>tight</u>)
 - The tighter the Big-Oh, the more accurate the estimate
- O(N²): reads "order N-squared" or "Big-Oh N-squared"

Example

- Show that $7N^2 + 10N + 5NlogN + 3$ is $O(N^2)$.
- Find c and n_0 such that when $N \ge n_0$ $7N^2 + 10N + 5NlogN + 3 \le cN^2$
- $7N^2 + 10N + 5NlogN + 3 \le 7N^2 + 10N^2 + 5N^2 + 3N^2 \le 25N^2$ when $N \ge 1$

So c = 25 and $n_0 = 1$.

• Use the same "technique" for the following problems.

Big Oh: More Examples

- (N² / 2) 3N is O(N²)
- 1 + 4N is O(N)
- 7N² + 10N + 3 is O(N²), is also O(N³)
- $\log_{10} N = \log_2 N / \log_2 10$ is $O(\log_2 N)$ or $O(\log N)$
- sin N is O(1); 10 is O(1), 10¹⁰ is O(1) [all of them are constants regardless of the size of the input]

•
$$\sum_{i=1}^{N} i \leq N \cdot N = O(N^2)$$

$$\sum_{i=1}^{N} i^2 \leq N \cdot N^2 = O(N^3)$$

- $\log N + N \text{ is } O(N)$
- log^k N is O(N) for any constant k
- N is $O(2^N)$, but 2^N is not O(N)
- 2^{4N} is not O(2^N)

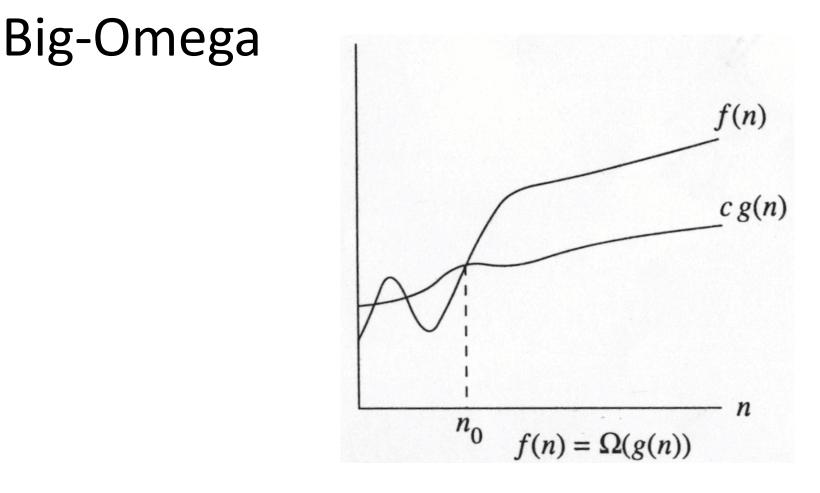
Math Review: Logarithmic Functions

$$x^{a} = b \quad iff \quad \log_{x} b = a$$
$$\log ab = \log a + \log b$$
$$\log_{a} b = \frac{\log_{m} b}{\log_{m} a}$$
$$\log a^{b} = b \log a$$
$$a^{\log n} = n^{\log a}$$
$$\log^{b} a = (\log a)^{b} \neq \log a^{b}$$
$$\frac{d \log_{e} x}{dx} = \frac{1}{x}$$

Some Rules

When considering the growth rate of a function using O()

- Ignore the lower order terms and the coefficients of the highest-order term
- No need to specify the base of logarithm
 - Changing the base from one constant to another changes the value of the logarithm by only a constant factor
- If T₁(N) is O(f(N)) and T₂(N) is O(g(N)), then
 - $T_1(N) + T_2(N) \text{ is } O(f(N) + g(N)) \qquad [if/else statements] \\ (or less formally it is max (O(f(N)), O(g(N)))),$
 - $T_1(N) * T_2(N) \text{ is } O(f(N) * g(N)) \qquad [nested for loops]$



- $\exists c, n_0 > 0$ such that $f(N) \ge c g(N)$ when $N \ge n_0$
- f(N) grows no slower than g(N) for "large" N

Big-Omega

- f(N) is $\Omega(g(N))$ if
- There are positive constants c and n₀ such that
 f(N) ≥ c g(N) when N ≥ n₀

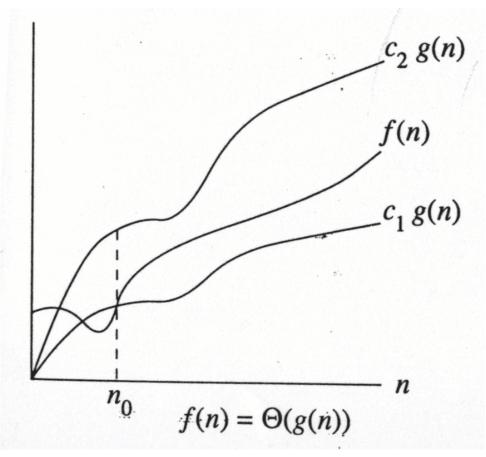
 where c is a real number.
- The growth rate of f(N) is *greater than or equal to* the growth rate of g(N).
- g(N) is a **lower bound** on f(N).

Big-Omega: Examples

- Let $f(N) = 2N^2$. Then
 - -f(N) is $\Omega(N)$ (not tight)
 - -f(N) is $\Omega(N^2)$ (best answer)

- We are still interested in the tightest function!

Big-Theta



- The growth rate of f(N) is the same as the growth rate of g(N)
- f(N) is $\Theta(g(N))$ iff f(N) is O(g(N)) and f(N) is $\Omega(g(N))$

Big-Theta: Example

• $c_2 = \frac{1}{2}, n_2 = 0$

An Example of O, Ω and Θ

• Given an unsorted array of integers, return true if a number k is in the array and false otherwise.

lower bound

```
for( i = 0; i < N; i++ )
    if ( k == A[i] )
        return ( true );
return ( false );</pre>
```

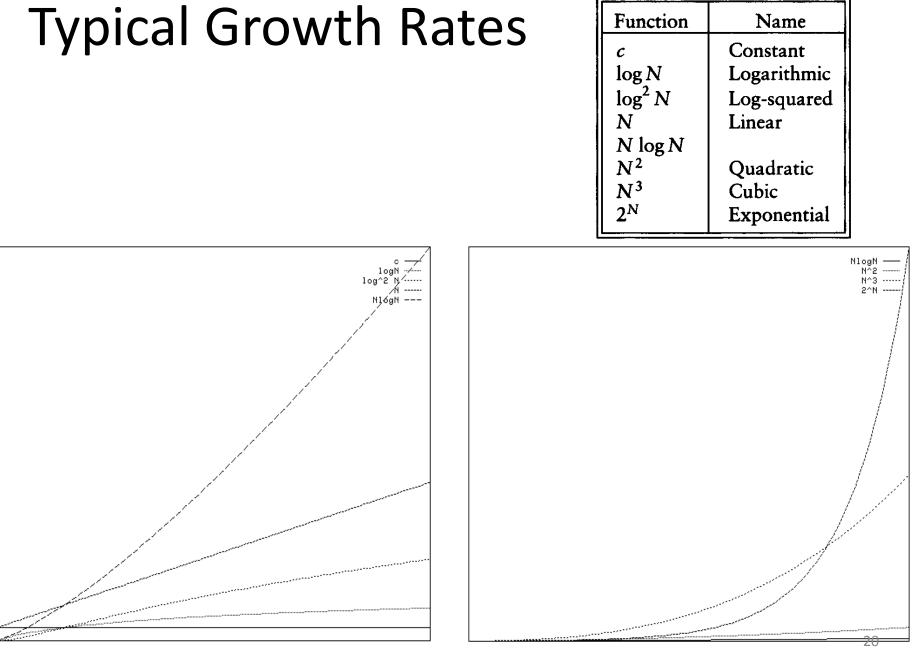
- Worst-case running time is O(N). upper bound \Rightarrow The alg. has O(N) running time.
- Best-case running time is O(1). \Rightarrow The alg. has $\Omega(1)$ running time.

 \Rightarrow We do not have Θ running time for this <u>algorithm</u>.

An Example of O, Ω and Θ

• Given an unsorted array of integers, find and return the maximum value stored in the array.

- Worst-case running time is O(N). upper bound \Rightarrow The alg. has O(N) running time.
- Best-case running time is O(N). lower bound \Rightarrow The alg. has $\Omega(N)$ running time.
- \Rightarrow The algorithm has $\Theta(N)$ running time.



Ν

Some More Rules

- If T(N) is a polynomial of degree k, then
 T(N) is Θ(N^k).
- For logarithmic functions, $T(\log_m N)$ is $\Theta(\log N)$.
- log^k N is O(N) for any constant k
 (logarithms grow very slowly)

Small-oh

- f(N) is **o**(g(N)) if
- f(N) is *o*(g(N))
 if f(N) is *O*(g(N)) and f(N) is not Θ(g(N))
- g(N) grows faster than f(N) for "large" N.

Small-oh: Example

- Let $f(N) = \frac{3}{4} N^2$ and f(N) be o(g(N)).
 - $-g(N) = N^2$?
 - $-g(N) = N^2 \log N$?
 - $-g(N) = N^3$?

Determining Relative Growth Rates of Two Functions

1. Using simple algebra (discussed previously) Example: which function grows faster?

$$-f(N) = N \log N$$

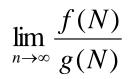
$$-g(N) = N^{1.5}$$

Using L' Hôpital's Rule

• L' Hôpital's rule

If $\lim_{n \to \infty} f(N) = \infty$ and $\lim_{n \to \infty} g(N) = \infty$ then $\lim_{n \to \infty} \frac{f(N)}{g(N)} = \lim_{n \to \infty} \frac{f'(N)}{g'(N)}$

• Determine the relative growth rates: compute



- if 0: f(N) is o(g(N))
- if constant $\neq 0$: f(N) is $\Theta(g(N))$
- if ∞ : g(N) is o(f(N))
- limit oscillates: no relation

Summary of Chapter 4

• Given an algorithm, compute its running time in terms of O, Ω , and Θ (if any).

- Usually the big-Oh running time is enough.

• Given f(n) = 5n + 10, show that f(n) is O(n).

- Find c and n_0

- Compare the grow rates of 2 functions.
- Order the grow rates of several functions.
 - Use simple algebra.
 - Use L'Hôpital's rule.

Next time ...

- Recursion (Chapter 3)
- Reading for this lecture: Chapter 4