Algorithm Analysis
part 2

cse2011

Good Algorithms! Good Data structures!

e Data structure: a systematic way of organizing
and accessing data

e Algorithm: step by step procedure for
performing a task in a finite amount of time.

* Program: Data structure + Algorithm
e Which algorithm/ds is better?
 \We need precise ways to analyze them.

Methodology

e Assume that n is the input size (e.g., the size of
the input array to be sorted) of the algorithm

e For each algorithm:

— A function f(n) that characterize its running time is
associated to it.

 \We are generally interested in the big-picture
approach.

— Constant factors are generally disregarded.

Typical Functions f(n)

Constant: 1

Logarithm: log n (x=log,n < b*=n, b>1)
Linear: n (one for loop)

n-log-n: n.logn

Quadratic: n? (two for loops)
Cubic: n® (three for loops)
Exponential: a” (a is a constant)

N o s Wb

Fast

Slow

Example

int findMax (int [] A) {
int max = A[O];
for Cint 1 =1; 1 < A_length; 1++)
iT(max < A[1])
max = A[1];
return max;

-~ 01 B~ W N P

n : the size of array A (A.length)
We are just interested to see that findMax grows proportionally to n
Constants are not important ...

f(n) = ?2??

Growth Rate ' cg(n)

f(n)

|
|
|
|
|
|
|

n

"0 fn) = O(g(n))

* The idea is to establish a relative order among
functions for large n.

e 3¢, ny>0such that f(n) <cg(n) whennz=>n,
 f(N) grows no faster than g(N) for “large” N

Asymptotic Notation: Big-Oh

f(N) is O(g(N)) if

There are positive constants c and ny such that
f(n) <c.g(n) whenn=>n,

where cis a real number.

The growth rate of f(N) is less than or equal to the
growth rate of g(N).

g(N) is an upper bound for f(N).

Big-Oh: Examples

e Let f(N) =2N2. Then
— f(N) is O(N%4)
— f(N) is O(N3)
— f(N) is O(N?) (best answer, asymptotically tight)

— The tighter the Big-Oh, the more accurate the
estimate

 O(N?): reads “order N-squared” or “Big-Oh N-squared”

Example

Show that 7N2 + 10N + 5NlogN + 3 is O(N?).

Find c and n, such that when N = n,
7N? + 10N + 5NlogN + 3 < cN?

7N? + 10N + 5NlogN + 3 < 7N? + 10N? + 5N2 + 3N?
<25N?whenN2>1
Soc=25andn,=1.

Use the same “technique” for the following
problems.

Big Oh: More Examples

(N2/2) — 3N is O(N2)

1+ 4N is O(N)

7N2 + 10N + 3 is O(N?), is also O(N3)

log,, N =log, N/ log, 10 is O(log, N) or O(log N)

sin N is O(1); 10is O(1), 10%°is O(]l) [all of them are constants
regardless of the size of the input

> i<N-N=0(N?)

> i2<N-N2=0(N?)

=1

log N + N is O(N)

log N is O(N) for any constant k
N is O(2N), but 2N is not O(N)
24N is not O(2N)

10

Math Review: Logarithmic Functions

x*=b iff log,b=a
logab=Iloga+logh
log . b

log, b=
log , a

loga” =blog a

logn loga

a'o%" =n
log® a =(log a)° #log a”
dlog,x 1

dx X

11

Some Rules

When considering the growth rate of a function

using O()
Ignore the lower order terms and the coefficients
of the highest-order term

No need to specify the base of logarithm

— Changing the base from one constant to another changes the
value of the logarithm by only a constant factor

If T,(N) is O(f(N)) and T,(N) is O(g(N)), then

— T,(N) + T,(N) is O(f(N) + g(N)) [if/else statements]
(or less formally it is max (O(f(N)), O(g(N)))),

— T,(N) * T,(N) is O(f(N) * g(N)) [nested for loops]

12

Big-Omega
f(n)

c g(n)

n

ny
f(n) = Q(g(n))

e Jdc,ny>0suchthatf(N)=cg(N)whenN2=n,
e f(N) grows no slower than g(N) for “large” N

13

Big-Omega

f(N) is C2(g(N)) if

There are positive constants c and ny such that
f(N) = c g(N) when N = n,

where cis a real number.

The growth rate of f(N) is greater than or equal to
the growth rate of g(N).

g(N) is a lower bound on f(N).

14

Big-Omega: Examples
e Let f(N)=2N2 Then

—f(N) is Q(N) (not tight)
— f(N) is Q(N?) (best answer)

— We are still interested in the tightest function!

15

Big-Theta

o fm) = 0Ggn)

 The growth rate of f(N) is the same as the growth
rate of g(N)

o f(N)is ®(g(N)) iff f(N) is O(g(N)) and f(N) is €2(g(N))

16

Big-Theta: Example

e Let f(N)=N?, g(N)=2N?
— Since f(N) is O(g(N)) and f(N) is Q(g(N)),
f(N) = ©(g(N)).

* ¢,=1,n,=0
* c,=%,n=0

17

An Example of O, Q2 and ®

« Given an unsorted array of integers, return true if a number Kk is in the

array and false otherwise.

for(1 = 0; 1 < N; i++)
1T (k == A[1])
return (true);
return (false);

* Worst-case running time is O(N).
—=The alg. has O(N) running time.

e Best-case running time is O(1).
= The alg. has Q(1) running time.

upper bound

lower bound

=We do not have ® running time for this algorithm.

18

An Example of O, Q2 and ®

« Given an unsorted array of integers, find and return the maximum value
stored in the array.

max = A[O];
for(C 1 =1; 1 < N; 1++)
i1IT (max < A[i1])
max = A[1];
return(max);

* Worst-case running time is O(N). upper bound
—=The alg. has O(N) running time.
e Best-case running time is O(N). lower bound

—=The alg. has Q2(N) running time.

o =The algorithm has ®(N) running time.

19

Typical Growth Rates

Function Name

c Constant
logN Logarithmic
log® N Log-squared
N Linear

N logN

N? Quadratic
N3 Cubic

2N Exponential

Some More Rules

e If T(N) is a polynomial of degree k, then
T(N) is O(N¥).

e For logarithmic functions,
T(log,, N) is ©(log N).

* logk N is O(N) for any constant k
(logarithms grow very slowly)

21

Small-oh

e f(N)is o(g(N))if

* f(N)is o(g(N))
if f(N) is O(g(N)) and f(N) is not ®(g(N))

e g(N) grows faster than f(N) for “large” N.

22

Small-oh: Example

e Let f(N) =% N2 and f(N) be o(g(N)).

—g(N)=N27?
—g(N)=N2logN ?
—g(N)=N?* ?

23

Determining Relative Growth Rates of Two
Functions

1. Using simple algebra (discussed previously)
Example: which function grows faster?
— f(N) = N logN
—g(N) =N

2. Using L" Hépital s rule

24

Using L' Hopital's Rule

L' Hopital's rule

if im f(N)=ow jng IIm g(N) =00

fN) i LN
then t!]IE)noo aN) S g'(N)
: : . f(N)
Determine the relative growth rates: compute lim ——=
N—o0 g(N)
— if O: f(N) is o(g(N))
— if constant = 0: f(N) is ®(g(N))
— if oo: g(N) is o(f(N))

— limit oscillates: no relation

25

Summary of Chapter 4

Given an algorithm, compute its running time in
terms of O, €}, and ® (if any).

— Usually the big-Oh running time is enough.
Given f(n) = 5n + 10, show that f(n) is O(n).
— Find c and n,

Compare the grow rates of 2 functions.
Order the grow rates of several functions.

— Use simple algebra.
— Use L' Hépital’ s rule.

Next time ...

e Recursion (Chapter 3)

e Reading for this lecture: Chapter 4

27

	Algorithm Analysis�part 2��cse2011
	Good Algorithms! Good Data structures!
	Methodology
	Typical Functions f(n)
	Example
	Growth Rate
	Asymptotic Notation: Big-Oh
	Big-Oh: Examples
	Example
	Big Oh: More Examples
	Math Review: Logarithmic Functions
	Some Rules
	Big-Omega
	Big-Omega
	Big-Omega: Examples
	Big-Theta
	Big-Theta: Example
	An Example of O,  and 
	An Example of O,  and 
	Typical Growth Rates
	Some More Rules
	Small-oh
	Small-oh: Example
	Determining Relative Growth Rates of Two Functions
	Using L' Hôpital's Rule
	Summary of Chapter 4
	Next time …

