
Recursion

cse2011

1

Recursion
• In some problems, it may be natural to define the

problem in terms of the problem itself.
• Recursion is useful for problems that can be

represented by a simpler version of the same
problem.

• Example: the factorial function
 6! = 6 * 5 * 4 * 3 * 2 * 1
 We could write:
 6! = 6 * 5!

2

Recursion (cont.)

• Recursion is one way to decompose a task into
smaller subtasks. At least one of the subtasks is a
smaller example of the same task.

• The smallest example of the same task has a non-
recursive solution.

• Example: the factorial function
 n! = n*(n-1)! and 1! = 1

3

Example: Factorial Function
• In general, we can express the factorial function as

follows:
 n! = n*(n-1)!
 Is this correct? Well… almost.

• The factorial function is only defined for positive

integers. So we should be more precise:
 f(n) = 1 if n = 1
 = n*f(n-1) if n > 1

4

Factorial Function: Pseudo-code

 int recFactorial(int n){
 if(n == 1)
 return 1;
 else
 return n * recFactorial(n-1);
 }

recursion means that a function calls itself.

5

Visualizing Recursion

Recursion trace
• A box for each recursive

call
• An arrow from each

caller to callee
• An arrow from each

callee to caller showing
return value

Using Recursion 6

Example recursion trace:

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

call

call

call return 1

return 2 * 1 = 2

return 3 * 2 = 6

return 4 * 6 = 24 final answer call

Recursive vs. Iterative Solutions

int fac(int numb) {
 if (numb == 1)
 return 1;
 else
 return

 (numb*fac(numb-1));
}

int fac(int numb){
 int product = 1;
 while(numb > 1){
 product *= numb;
 numb--;
 }
 return product;
}

• For certain problems (such as the factorial function), a
recursive solution often leads to short and elegant code.
Compare the recursive solution with the iterative solution:

7

A Word of Caution

• To trace recursion, function calls operate as a
stack – the new function is put on top of the
caller.

• We have to pay a price for recursion:
– calling a function consumes more time and memory than

adjusting a loop counter.
– high performance applications (graphic action games,

simulations of nuclear explosions) hardly ever use recursion.
• In less demanding applications, recursion is an

attractive alternative for iteration (for the right
problems!)

8

Infinite Loops
 If we use iteration, we must be careful not to create

an infinite loop by accident.

 for (int incr=1; incr!=10; incr+=2)
 ...

 another example:
 int result = 1;
 while(result > 0){
 ...
 result++;
 }

9

Oops!

Oops!

Infinite Recursion
 Similarly, if we use recursion, we must be

careful not to create an infinite chain of
function calls.

 int fac(int numb){
 return numb * fac(numb-1);
 }

 int fac(int numb){
 if (numb == 1)
 return 1;
 else
 return numb * fac(numb + 1);
 }

10

Oops!
No termination

condition

Oops!

Tips

 We must always make sure that the recursion
bottoms out:

• A recursive function must contain at least one non-

recursive branch.

• The recursive calls must eventually lead to a non-
recursive branch.

11

General Form of Recursion

• How to write recursively?

int recur_fn(parameters){
 if (stopping_condition) // base case
 return stopping_value;
 if (stopping_condition_2) // base case 2
 return stopping_value_2;
 return recur_fn(revised_parameters)
}

12

Optional

Example: Sum of an Array

Algorithm LinearSum(A, n):
Input:
 A integer array A and an integer n ≥

1, such that A has at least n
elements

Output:
 Sum of the first n integers in A

if n = 1 then
 return A[0];
else
 return LinearSum(A, n - 1)
 + A[n - 1];

Using Recursion 13

Example recursion trace:

LinearSum (A , 5)

LinearSum (A , 1)

LinearSum (A , 2)

LinearSum (A , 3)

LinearSum (A , 4)

call

call

call

call return A [0] = 4

return 4 + A [1] = 4 + 3 = 7

return 7 + A [2] = 7 + 6 = 13

return 13 + A [3] = 13 + 2 = 15

call return 15 + A [4] = 15 + 5 = 20

Example: Reversing an Array

Algorithm ReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices

i and j
 Output: The reversal of the elements in A starting

at index i and ending at j

 if i < j then
 swap A[i] and A[j];
 ReverseArray(A, i + 1, j – 1);
 return

Using Recursion 14

Defining Arguments for Recursion

• In creating recursive methods, it is important to
define the methods in ways that facilitate recursion.

• This sometimes requires we define additional
paramaters that are passed to the method.

• For example, we defined the array reversal method
as ReverseArray(A, i, j), not ReverseArray(A).

Using Recursion 15

Linear Recursion

• The above 2 examples use linear recursion.

• It is the simplest form of recursion.

• It makes at most one recursive call each time
it is invoked.

16

Linear Recursion (2)

• Test for base cases.
– Begin by testing for a set of base cases (there should be

at least one).
– Every possible chain of recursive calls must eventually

reach a base case, and the handling of each base case
should not use recursion.

• Recur once.
– Perform a single recursive call. (This recursive step may

involve a test that decides which of several possible
recursive calls to make, but it should ultimately choose
to make just one of these calls each time we perform
this step.)

– Define each possible recursive call so that it makes
progress towards a base case.

Using Recursion 17

Tail Recursion
• Tail recursion occurs when a linearly recursive method

makes its recursive call as its last step.
• The array reversal method is an example.
• Such methods can be easily converted to non-recursive

methods (which saves on some resources, e.g., memory).
• Example:

Algorithm IterativeReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at index i and

ending at j
 while i < j do

 Swap A[i] and A[j]
 i = i + 1
 j = j - 1

 return

Using Recursion 18

Tail Recursion
• Sum of an Array is not a tail recursion.

• Why?!

• Because the recursive call is not the last step.

• The last step is summing up with the last element!

Using Recursion 19

Another Example: Binary Search

• Search for an element in a sorted array
– Sequential search
– Binary search

• Binary search

– Compare the search element with the middle element of
the array.

– If not equal, then apply binary search to half of the array (if
not empty) where the search element would be.

20

Binary Search with Recursion

// Searches an ordered array of integers using recursion
int bsearchr(const int data[], // input: array
 int first, // input: lower bound
 int last, // input: upper bound
 int value // input: value to find
) // return index if found, otherwise return –1

{ int middle = (first + last) / 2;
 if (data[middle] == value)
 return middle;
 else if (first >= last)
 return -1;
 else if (value < data[middle])
 return bsearchr(data, first, middle-1, value);
 else
 return bsearchr(data, middle+1, last, value);
}

21

Binary Recursion

• Binary recursion occurs whenever there are two
recursive calls for each non-base case.

• Example: next slide

Using Recursion 22

Binary Recursive Method
• Problem: add all the numbers in an integer

array A:
Algorithm BinarySum(A, i, n):
 Input: An array A and integers i and n
 Output: The sum of the n integers in A starting at index i
 if n = 1 then
 return A[i];
 return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2);

• Example trace: array A has 8 elements

23

3 , 1

2 , 2

0 , 4

2 , 1 1 , 1 0 , 1

0 , 8

0 , 2

7 , 1

6 , 2

4 , 4

6 , 1 5 , 1

4 , 2

4 , 1

Multiple Recursion

• Multiple recursion: makes potentially many
recursive calls (not just one or two).

• Not covered in this course.

Using Recursion 24

Running Time of Recursive Methods

• Could be just a hidden “for" or “while” loop.
– See “Tail Recursion” slide.
– “Unravel” the hidden loop to count the number of

iterations.

• Logarithmic (next)
– Examples: binary search, exponentiation, GCD

• Solving a recurrence
– Example: merge sort (next lecture)

25

Logarithms

CSE 2011

26

Logarithmic Running Time

• An algorithm is O(logN) if it takes constant (O(1))
time to cut the problem size by a fraction (e.g., by ½).

• An algorithm is O(N) if constant time is required to
merely reduce the problem by a constant amount
(e.g., by 1).

27

Binary Search
int binarySearch (int[] a, int x)
{
/*1*/ int low = 0, high = a.size() - 1;
/*2*/ while (low <= high)
 {
/*3*/ int mid = (low + high) / 2;
/*4*/ if (a[mid] < x)
/*5*/ low = mid + 1;
/*6*/ else if (x < a[mid])
/*7*/ high = mid - 1;
 else
/*8*/ return mid; // found
 }
/*9*/ return NOT_FOUND
}

28

Exponentiation xn

long exp(long x, int n)
{
/*1*/ if (n==0)
/*2*/ return 1;
/*3*/ if (n==1)
/*4*/ return x;
/*5*/ if (isEven(n))
/*6*/ return exp(x*x, n/2);
 else
/*7*/ return exp(x*x, n/2)*x;
}

29

Euclid’s Algorithm

• Homework: trace the following algorithm. What is its running time?
(Hint: see next slide)

• Computing the greatest common divisor (GCD) of two integers

long gcd (long m, long n) // assuming m>=n
{
/*1*/ while (n!=0)
 {
/*2*/ long rem = m%n;
/*3*/ m = n;
/*4*/ n = rem;
 }
/*5*/ return m;
}

30

Euclid’s Algorithm (2)

• Theorem:
– If M > N, then M mod N < M/2.

• Max number of iterations:
– 2logN = O(logN)

• Average number of iterations:
– (12 ln 2 ln N)/π2 + 1.47

Next time …

• Merge Sort (section 11.1)
• Quick Sort (section 11.2)

• Reading for this lecture: section 3.5

32

	Recursion ��cse2011
	Recursion
	Recursion (cont.)
	Example: Factorial Function
	Factorial Function: Pseudo-code
	Visualizing Recursion
	Recursive vs. Iterative Solutions
	A Word of Caution
	Infinite Loops
	Infinite Recursion
	Tips
	General Form of Recursion
	Example: Sum of an Array
	Example: Reversing an Array
	Defining Arguments for Recursion
	Linear Recursion
	Linear Recursion (2)
	Tail Recursion
	Tail Recursion
	Another Example: Binary Search
	Binary Search with Recursion
	Binary Recursion
	Binary Recursive Method
	Multiple Recursion
	Running Time of Recursive Methods
	Logarithms
	Logarithmic Running Time
	Binary Search
	Exponentiation xn
	Euclid’s Algorithm
	Euclid’s Algorithm (2)
	Next time …

