Recursion

cse2011

1

Recursion

- In some problems, it may be natural to define the problem in terms of the problem itself.
- Recursion is useful for problems that can be represented by a simpler version of the same problem.
- Example: the factorial function

6! = 6 * 5 * 4 * 3 * 2 * 1

We could write:

6! = 6 * 5!

Recursion (cont.)

- Recursion is one way to decompose a task into smaller subtasks. At least one of the subtasks is a smaller example of the same task.
- The smallest example of the same task has a non-recursive solution.
- Example: the factorial function

n! = n*(n-1)! and 1! = 1

Example: Factorial Function

• In general, we can express the factorial function as follows:

n! = n*(n-1)!

Is this correct? Well... almost.

• The factorial function is only defined for *positive* integers. So we should be more precise:

 $f(n) = 1 & if n = 1 \\ = n*f(n-1) & if n > 1$

Factorial Function: Pseudo-code

```
int recFactorial( int n ){
    if( n == 1 )
        return 1;
    else
        return n * recFactorial( n-1 );
}
```

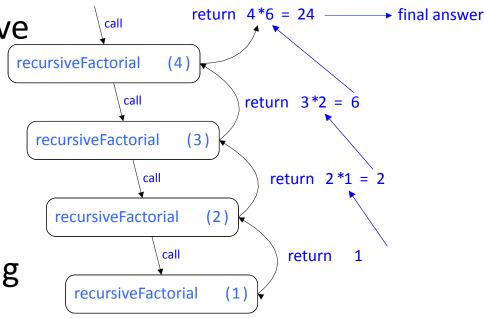
recursion means that a function calls itself.

Visualizing Recursion

Recursion trace

Example recursion trace:

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value



Recursive vs. Iterative Solutions

• For certain problems (such as the factorial function), a recursive solution often leads to short and elegant code. Compare the recursive solution with the iterative solution:

```
int fac(int numb) {
                              int fac(int numb){
  if (numb == 1)
    return 1;
  else
    return
                                }
      (numb*fac(numb-1));
}
                              }
```

```
int product = 1;
while(numb > 1){
  product *= numb;
  numb--;
return product;
```

A Word of Caution

- To trace recursion, function calls operate as a stack the new function is put on top of the caller.
- We have to pay a price for recursion:
 - calling a function consumes more time and memory than adjusting a loop counter.
 - high performance applications (graphic action games, simulations of nuclear explosions) hardly ever use recursion.
- In less demanding applications, recursion is an attractive alternative for iteration (for the right problems!)

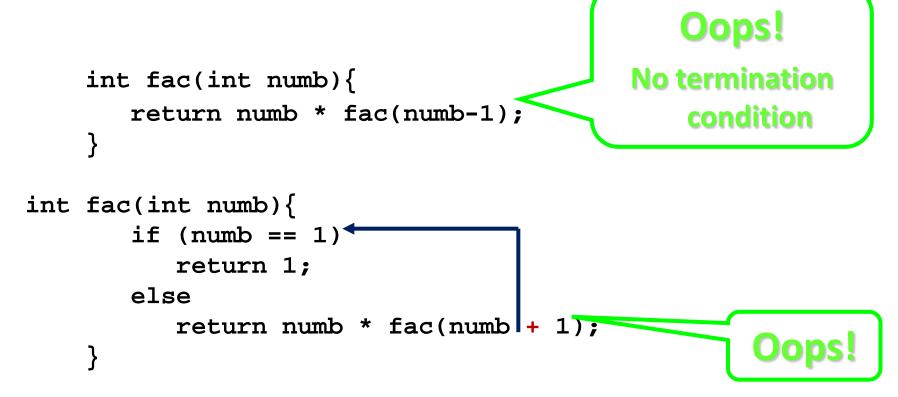
Infinite Loops

If we use iteration, we must be careful not to create an infinite loop by accident.

```
for (int incr=1; incr!=10; incr+=2)
another example:
                                Oops
int result = 1;
while(result > 0){
   result++;
                                 Oops!
```

Infinite Recursion

Similarly, if we use recursion, we must be careful not to create an infinite chain of function calls.



Tips

We must always make sure that the recursion *bottoms out*:

- A recursive function must contain at least one nonrecursive branch.
- The recursive calls must eventually lead to a non-recursive branch.

General Form of Recursion

• How to write recursively?

}

int recur_fn(parameters){
 if (stopping_condition) // base case
 return stopping_value;
 if (stopping_condition_2) // base case 2
 return stopping_value_2;
 return recur_fn(revised_parameters)

Example: Sum of an Array

Algorithm LinearSum(*A*, *n*):

Input:

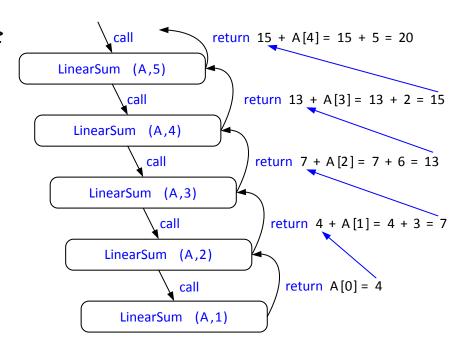
A integer array A and an integer n ≥ 1, such that A has at least n elements

Output:

Sum of the first *n* integers in *A*

```
if n = 1 then
  return A[0];
else
  return LinearSum(A, n - 1)
      + A[n - 1];
```

Example recursion trace:



Example: Reversing an Array

Algorithm ReverseArray(*A*, *i*, *j*):

- *Input:* An array *A* and nonnegative integer indices *i* and *j*
- **Output:** The reversal of the elements in A starting at index *i* and ending at *j*

if i < j then
 swap A[i] and A[j];
 ReverseArray(A, i + 1, j - 1);
return</pre>

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional paramaters that are passed to the method.
- For example, we defined the array reversal method as ReverseArray(*A*, *i*, *j*), not ReverseArray(*A*).

Linear Recursion

• The above 2 examples use linear recursion.

• It is the simplest form of recursion.

• It makes at most one recursive call each time it is invoked.

Linear Recursion (2)

- Test for base cases.
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

• Recur once.

- Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
- Define each possible recursive call so that it makes progress towards a base case.

Tail Recursion

- Tail recursion occurs when a <u>linearly recursive</u> method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources, e.g., memory).
- Example:

```
Algorithm IterativeReverseArray(A, i, j):
```

Input: An array A and nonnegative integer indices *i* and *j*

Output: The reversal of the elements in A starting at index *i* and ending at *j*

```
while i < j do
```

```
Swap A[i ] and A[j ]
```

```
i = i + 1
```

```
j = j - 1
```

return

Tail Recursion

- *Sum of an Array* is **not** a tail recursion.
- Why?!
- Because the recursive call is **not** the **last step**.
- The last step is summing up with the last element!

Another Example: Binary Search

- Search for an element in a <u>sorted</u> array
 - Sequential search
 - Binary search
- Binary search
 - Compare the search element with the middle element of the array.
 - If not equal, then apply binary search to half of the array (if not empty) where the search element would be.

Binary Search with Recursion

```
// Searches an ordered array of integers using recursion
int bsearchr(const int data[], // input: array
            int first, // input: lower bound
            int last, // input: upper bound
            int value // input: value to find
       ) // return index if found, otherwise return -1
  int middle = (first + last) / 2;
  if (data[middle] == value)
     return middle;
  else if (first >= last)
     return -1;
  else if (value < data[middle])</pre>
     return bsearchr(data, first, middle-1, value);
  else
     return bsearchr(data, middle+1, last, value);
```

Binary Recursion

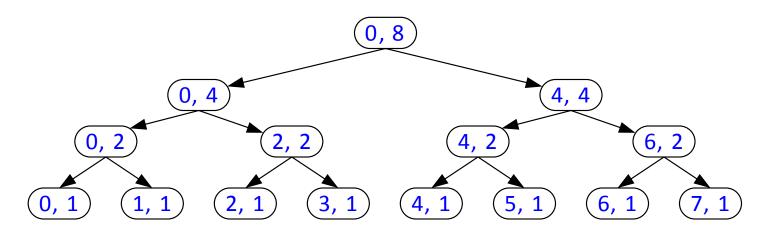
- Binary recursion occurs whenever there are **two** recursive calls for each non-base case.
- Example: next slide

Binary Recursive Method

• Problem: add all the numbers in an integer array A:

```
Algorithm BinarySum( A, i, n ):
    Input: An array A and integers i and n
    Output: The sum of the n integers in A starting at index i
    if n = 1 then
        return A[i];
    return BinarySum( A, i, n/ 2 ) + BinarySum( A, i + n/ 2, n/ 2 );
```

• Example trace: array A has 8 elements



Multiple Recursion

• Multiple recursion: makes potentially many recursive calls (not just one or two).

• Not covered in this course.

Running Time of Recursive Methods

- Could be just a hidden "for" or "while" loop.
 - See "Tail Recursion" slide.
 - "Unravel" the hidden loop to count the number of iterations.
- Logarithmic (next)
 - Examples: binary search, exponentiation, GCD
- Solving a recurrence
 - Example: merge sort (next lecture)

Logarithms

CSE 2011

Logarithmic Running Time

- An algorithm is O(logN) if it takes constant (O(1)) time to cut the problem size by a fraction (e.g., by ½).
- An algorithm is O(N) if constant time is required to merely reduce the problem by a constant amount (e.g., by 1).

Binary Search

```
int binarySearch (int[] a, int x)
{
/*1*/ int low = 0, high = a.size() - 1;
/*2*/ while (low <= high)</pre>
        {
/*3*/ int mid = (low + high) / 2;
/*4*/
         if (a[mid] < x)
/*5*/ low = mid + 1;
/*6*/ else if (x < a[mid])</pre>
/*7*/ high = mid - 1;
         else
/*8*/ return mid; // found
        }
/*9*/ return NOT_FOUND
}
```

Exponentiation xⁿ

```
long exp(long x, int n)
{
/*1*/ if (n==0)
/*2*/ return 1;
/*3*/ if (n==1)
/*4*/ return x;
/*5*/ if (isEven(n))
/*6*/
         return \exp(x*x, n/2);
       else
/*7*/ return exp(x*x, n/2)*x;
}
```

Euclid's Algorithm

- Homework: trace the following algorithm. What is its running time? (Hint: see next slide)
- Computing the greatest common divisor (GCD) of two integers

```
long gcd (long m, long n) // assuming m>=n
{
    /*1*/ while (n!=0)
        {
        /*2*/ long rem = m%n;
        /*3*/ m = n;
        /*4*/ n = rem;
        }
    /*5*/ return m;
}
```

Euclid's Algorithm (2)

- Theorem:
 - If M > N, then $M \mod N < M/2$.
- Max number of iterations:
 - $2\log N = O(\log N)$
- Average number of iterations:

- (12 ln 2 ln N)/ π^2 + 1.47

Next time ...

- Merge Sort (section 11.1)
- Quick Sort (section 11.2)

• Reading for this lecture: section 3.5