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Recursion 
• In some problems, it may be natural to define the 

problem in terms of the problem itself. 
• Recursion is useful for problems that can be 

represented by a simpler version of the same 
problem. 

• Example: the factorial function 
  6! = 6 * 5 * 4 * 3 * 2 * 1 
 We could write: 
  6! = 6 * 5! 
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Recursion (cont.) 

• Recursion is one way to decompose a task into 
smaller subtasks. At least one of the subtasks is a 
smaller example of the same task. 
 

• The smallest example of the same task has a non-
recursive solution. 
 

• Example: the factorial function 
 n! = n*(n-1)! and 1! = 1 
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Example: Factorial Function 
• In general, we can express the factorial function as 

follows: 
  n! = n*(n-1)! 
 Is this correct? Well… almost. 
  
• The factorial function is only defined for positive 

integers. So we should be more precise: 
  f(n) = 1   if n = 1 
      = n*f(n-1)  if n > 1 
   

4 



Factorial Function:  Pseudo-code 

 int recFactorial( int n ){ 
    if( n == 1 ) 
       return 1; 
    else 
      return n * recFactorial( n-1 ); 
 } 
 
recursion means that a function calls itself. 
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Visualizing Recursion 

Recursion trace 
• A box for each recursive 

call 
• An arrow from each 

caller to callee 
• An arrow from each 

callee to caller showing 
return value 

Using Recursion 6 

Example recursion trace: 

recursiveFactorial ( 4 ) 

recursiveFactorial ( 3 ) 

recursiveFactorial ( 2 ) 

recursiveFactorial ( 1 ) 

call 

call 

call return  1 

return  2 * 1  =  2 

return  3 * 2  =  6 

return  4 * 6  =  24 final answer call 



Recursive vs. Iterative Solutions 

int fac(int numb) { 
 if (numb == 1) 
    return 1; 
 else 
   return   

 (numb*fac(numb-1)); 
} 

int fac(int numb){ 
  int product = 1; 
  while(numb > 1){ 
    product *= numb; 
    numb--; 
  } 
  return product; 
} 

• For certain problems (such as the factorial function), a 
recursive solution often leads to short and elegant code. 
Compare the recursive solution with the iterative solution: 
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A Word of Caution 

• To trace recursion, function calls operate as a 
stack – the new function is put on top of the 
caller. 

• We have to pay a price for recursion: 
– calling a function consumes more time and memory than 

adjusting a loop counter.  
– high performance applications (graphic action games, 

simulations of nuclear explosions) hardly ever use recursion. 
• In less demanding applications, recursion is an 

attractive alternative for iteration (for the right 
problems!)  
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Infinite Loops 
 If we use iteration, we must be careful not to create 

an infinite loop by accident. 
 
 for (int incr=1; incr!=10; incr+=2) 
   ... 
 
 another example: 
 int result = 1; 
 while(result > 0){ 
   ... 
   result++; 
 } 
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Oops! 

Oops! 



Infinite Recursion 
 Similarly, if we use recursion, we must be 

careful not to create an infinite chain of 
function calls. 

   
  int fac(int numb){ 
     return numb * fac(numb-1); 
  } 
  
    int fac(int numb){ 
     if (numb == 1) 
        return 1; 
     else 
        return numb * fac(numb + 1); 
  } 
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Oops! 
No termination 

condition 

Oops! 



Tips 

 We must always make sure that the recursion 
bottoms out: 

 
• A recursive function must contain at least one non-

recursive branch. 
 

• The recursive calls must eventually lead to a non-
recursive branch. 
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General Form of Recursion  

• How to write recursively? 
 

int recur_fn( parameters ){ 
  if ( stopping_condition )  // base case 
  return stopping_value; 
  if ( stopping_condition_2 )  // base case 2 
  return stopping_value_2; 
 return recur_fn( revised_parameters )     
}   
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Example: Sum of an Array 

Algorithm LinearSum(A, n): 
Input:  
  A integer array A and an integer n ≥ 

1, such that A has at least n 
elements 

Output:  
  Sum of the first n integers in A 
 
if n = 1 then 
  return A[0]; 
else 
  return LinearSum(A, n - 1)  
             + A[n - 1]; 
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Example recursion trace: 

LinearSum ( A , 5 ) 

LinearSum ( A , 1 ) 

LinearSum ( A , 2 ) 

LinearSum ( A , 3 ) 

LinearSum ( A , 4 ) 

call 

call 

call 

call return  A [ 0 ] =  4 

return  4  +  A [ 1 ] =  4  +  3  =  7 

return  7  +  A [ 2 ] =  7  +  6  =  13 

return  13  +  A [ 3 ] =  13  +  2  =  15 

call return  15  +  A [ 4 ] =  15  +  5  =  20 



Example: Reversing an Array 

Algorithm ReverseArray( A, i,  j ): 
   Input: An array A and nonnegative integer indices 

i and  j 
   Output: The reversal of the elements in A starting 

at index i and ending at  j 
 
     if i <  j then 
  swap A[i] and A[ j]; 
  ReverseArray( A, i + 1,  j – 1 ); 
     return 
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Defining Arguments for Recursion 

• In creating recursive methods, it is important to 
define the methods in ways that facilitate recursion. 

• This sometimes requires we define additional 
paramaters that are passed to the method. 

• For example, we defined the array reversal method 
as ReverseArray(A, i,  j), not ReverseArray(A). 
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Linear Recursion 

• The above 2 examples use linear recursion. 
 

• It is the simplest form of recursion. 
 

• It makes at most one recursive call each time 
it is invoked. 
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Linear Recursion (2) 

• Test for base cases.  
– Begin by testing for a set of base cases (there should be 

at least one).  
– Every possible chain of recursive calls must eventually 

reach a base case, and the handling of each base case 
should not use recursion. 

• Recur once.  
– Perform a single recursive call. (This recursive step may 

involve a test that decides which of several possible 
recursive calls to make, but it should ultimately choose 
to make just one of these calls each time we perform 
this step.) 

– Define each possible recursive call so that it makes 
progress towards a base case. 
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Tail Recursion 
• Tail recursion occurs when a linearly recursive method 

makes its recursive call as its last step. 
• The array reversal method is an example. 
• Such methods can be easily converted to non-recursive 

methods (which saves on some resources, e.g., memory). 
• Example: 

Algorithm IterativeReverseArray(A, i, j ): 
      Input: An array A and nonnegative integer indices i and j 
      Output: The reversal of the elements in A starting at index i and 

ending at j 
     while i <  j do 

 Swap A[i ] and A[ j ] 
 i  = i + 1 
 j  = j - 1 

     return 
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Tail Recursion 
• Sum of an Array is not a tail recursion. 

 
• Why?! 

 
• Because the recursive call is not the last step. 

 
• The last step is summing up with the last element! 
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Another Example: Binary Search 

• Search for an element in a sorted array 
– Sequential search 
– Binary search 

 
• Binary search 

– Compare the search element with the middle element of 
the array. 

– If not equal, then apply binary search to half of the array (if 
not empty) where the search element would be.  
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Binary Search with Recursion 

// Searches an ordered array of integers using recursion 
int bsearchr(const int data[], // input: array 
             int first,        // input: lower bound 
             int last,         // input: upper bound 
             int value         // input: value to find 
        ) // return index if found, otherwise return –1 
 
{  int middle = (first + last) / 2; 
   if (data[middle] == value) 
      return middle; 
   else if (first >= last) 
      return -1; 
   else if (value < data[middle]) 
      return bsearchr(data, first, middle-1, value); 
   else 
      return bsearchr(data, middle+1, last, value); 
} 
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Binary Recursion 

• Binary recursion occurs whenever there are two 
recursive calls for each non-base case. 
 

• Example: next slide 
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Binary Recursive Method 
• Problem: add all the numbers in an integer 

array A: 
Algorithm BinarySum( A, i, n ): 
      Input: An array A and integers i and n 
      Output: The sum of the n integers in A starting at index i 
     if n = 1 then 
    return A[i ]; 
     return BinarySum( A, i, n/ 2 ) + BinarySum( A, i + n/ 2, n/ 2 ); 

 
• Example trace: array A has 8 elements 

23 

3 ,  1 

2 ,  2 

0 ,  4 

2 ,  1 1 ,  1 0 ,  1 

0 ,  8 

0 ,  2 

7 ,  1 

6 ,  2 

4 ,  4 

6 ,  1 5 ,  1 

4 ,  2 

4 ,  1 



Multiple Recursion 

• Multiple recursion: makes potentially many 
recursive calls (not just one or two). 
 

• Not covered in this course. 
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Running Time of Recursive Methods 

• Could be just a hidden “for" or “while” loop. 
– See “Tail Recursion” slide. 
– “Unravel” the hidden loop to count the number of 

iterations. 

• Logarithmic (next) 
– Examples: binary search, exponentiation, GCD 

• Solving a recurrence 
– Example: merge sort (next lecture) 

 
25 



Logarithms 

CSE 2011 
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Logarithmic Running Time 

• An algorithm is O(logN) if it takes constant (O(1)) 
time to cut the problem size by a fraction (e.g., by ½). 
 

• An algorithm is O(N) if constant time is required to 
merely reduce the problem by a constant amount 
(e.g., by 1). 
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Binary Search 
int binarySearch (int[] a, int x) 
{ 
/*1*/   int low = 0, high = a.size() - 1; 
/*2*/   while (low <= high) 
         { 
/*3*/     int mid = (low + high) / 2; 
/*4*/     if (a[mid] < x) 
/*5*/  low = mid + 1; 
/*6*/     else if (x < a[mid]) 
/*7*/  high = mid - 1; 
      else 
/*8*/  return mid;  // found 
    } 
/*9*/   return NOT_FOUND 
} 
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Exponentiation xn 

long exp(long x, int n) 
{ 
/*1*/   if (n==0) 
/*2*/     return 1; 
/*3*/   if (n==1) 
/*4*/     return x; 
/*5*/   if (isEven(n)) 
/*6*/     return exp(x*x, n/2); 
    else 
/*7*/     return exp(x*x, n/2)*x; 
} 
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Euclid’s Algorithm 

• Homework: trace the following algorithm.  What is its running time? 
(Hint: see next slide) 

• Computing the greatest common divisor (GCD) of two integers 
 
long gcd (long m, long n) // assuming m>=n 
{ 
/*1*/   while (n!=0) 
         { 
/*2*/     long rem = m%n; 
/*3*/     m = n; 
/*4*/     n = rem; 
    } 
/*5*/   return m; 
} 
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Euclid’s Algorithm (2) 

• Theorem: 
–  If M > N, then M mod N < M/2. 

• Max number of iterations:  
–  2logN = O(logN) 

• Average number of iterations:  
–  (12 ln 2 ln N)/π2 + 1.47 



Next time … 

• Merge Sort (section 11.1) 
• Quick Sort (section 11.2) 

 
• Reading for this lecture: section 3.5 
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