
Merge Sort

cse2011
section 11.1 of textbook

1

Sorting Problem

• Input:
1. A sequence of n object

• Stored in a link list or an array.

2. A comparator that defines a total order on the
objects.

• Output:
– An ordered representation of these objects.

2

Goals

• Divide-and-conquer approach
• Solving recurrences
• One more sorting algorithm

3

Merge Sort: Main Idea

Based on divide-and-conquer strategy
• Divide the list into two smaller lists of about equal sizes.
• Sort each smaller list recursively. (base of recurrence ?)

• Merge the two sorted lists to get one sorted list.

Questions:
• How do we divide the list? How much time needed?
• How do we merge the two sorted lists? How much time

needed?

4

Dividing

• If the input list is an array A[0..N-1]: dividing
takes O(1) time:
– Represent a sub-array by two integers left and right.
– To divide A[left .. right], compute center=(left+right)/2 and

obtain A[left .. center] and A[center+1 .. right]

• If the input list is a linked list, dividing takes
Θ(N) time:
– Scan the linked list, stop at the N/2th entry and cut the

link.

5

Merge Sort: Algorithm

• Divide-and-conquer strategy
– recursively sort the first half and the second half
– merge the two sorted halves together

 void mergeSort(int A[], int left, int right)
 if(left<right){
 int center = (left+right)/2;
 mergeSort(A, left, center);
 mergeSort(A, center + 1, right);
 merge(A, left, center+1, right);
 }
 }

6

7 http://www.cosc.canterbury.ac.nz/people/mukundan/dsal/MSort.html

Merging
• Input: two sorted array A and B
• Output: an output sorted array C
• Three counters: Actr, Bctr, and Cctr

– initially set to the beginning of their respective arrays

– The smaller of A[Actr] and B[Bctr] is copied to the next entry in C, and
the appropriate counters are increased.

– As soon as each of the list becomes empty, the remainder of the other
list is copied to C.

8

Merge: Example

9

Example: Merge (2)

10

ArrayList
• ArrayList

– A class in the standard Java libraries that can hold
any type of object

– An object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

• In general, an ArrayList serves the same
purpose as an array, except that an
ArrayList can change length while the
program is running

11

Merge: Java Code – Lists Implementations
void merge(ArrayList<E> L1, ArrayList<E> L2, Comparator<E> c, ArrayList<E> rList){
 while (!L1.isEmpty() && !L2.isEmpty()) {
 if(c.compare(L1.get(0), L2.get(0)) <= 0){
 rList.add(L1.get(0));
 L1.remove(0);
 } else {
 rList.add(L2.get(0));
 L2.remove(0);
 }
 }
 while(!L1.isEmpty()){
 rList.add(L1.get(0));
 L1.remove(0);
 }
 while(!L2.isEmpty()){
 rList.add(L2.get(0));
 L2.remove(0);
 }
}

12

Merge: Analysis

• Running time analysis:
– Merge takes O(m1 + m2), where m1 and m2 are the

sizes of the two sub-arrays.

• Space requirement:
– merging two sorted lists requires linear extra

memory
– additional work to copy to the temporary array

and back

13

Analysis of Merge Sort – First Approach

14

•Merge sort tree has O(log n) levels.
•The time spent at any node excludes the recursive call
•Merge sort tree has 2i nodes at depth i.
•The number of elements at each node in depth i is n/2i.

Analysis of Merge Sort - Second Approach
recurrence relation

void mergeSort(int A[], int left, int right) T(N)
 if(left<right){ θ(1)
 int center = (left+right)/2; θ(1)
 mergeSort(A, left, center); T(N/2)
 mergeSort(A, center + 1, right); T(N/2)
 merge(A, left, center+1, right); θ(N)
 }
}

15

• Let T(N) denote the worst-case running time of
mergesort to sort N numbers.

• Assume that N is a power of 2.

• Divide step: O(1) time
• Conquer step: 2 x T(N/2) time
• Combine step: O(N) time

• Recurrence equation:

 T(1) = 1
 T(N) = 2T(N/2) + N

16

Analysis of Merge Sort - Second Approach

Solving the Recurrence

17

kNNT

NNT

NNNT

NNT

NNNT

NNTNT

k
k +=

=+=

++=

+=

++=

+=

)
2

(2

3)
8

(8

2)
4

)
8

(2(4

2)
4

(4

)
2

)
4

(2(2

)
2

(2)(



Since N=2k, we have k=log2 n

)log(
log

)
2

(2)(

NNO
NNN

kNNTNT k
k

=
+=

+=

	Merge Sort ��cse2011�section 11.1 of textbook
	Sorting Problem
	Goals
	Merge Sort: Main Idea
	Dividing
	Merge Sort: Algorithm
	Slide Number 7
	Merging
	Merge: Example
	Example: Merge (2)
	ArrayList
	Merge: Java Code – Lists Implementations
	Merge: Analysis
	Analysis of Merge Sort – First Approach
	Analysis of Merge Sort - Second Approach�recurrence relation
	Slide Number 16
	Solving the Recurrence

