Merge Sort

cse2011

section 11.1 of textbook

Sorting Problem

* |Input:
1. A sequence of n object
e Storedin alink list or an array.

2. A comparator that defines a total order on the
objects.

e Output:

— An ordered representation of these objects.

Goals

e Divide-and-conquer approach
e Solving recurrences
* One more sorting algorithm

Merge Sort: Main Idea

Based on divide-and-conquer strategy
e Divide the list into two smaller lists of about equal sizes.

e Sort each smaller list recursively. (base of recurrence ?)
e Merge the two sorted lists to get one sorted list.

Questions:
e How do we divide the list? How much time needed?

* How do we merge the two sorted lists? How much time
needed?

Dividing

e If the input list is an array A[0..N-1]: dividing
takes O(1) time:

— Represent a sub-array by two integers left and right.

— To divide A[left .. right], compute center=(left+right)/2 and
obtain A[left .. center] and A[center+1 .. right]

e If the input list is a linked list, dividing takes
®(N) time:

— Scan the linked list, stop at the [N/2.th entry and cut the
link.

Merge Sort: Algorithm

e Divide-and-conquer strategy

— recursively sort the first half and the second half
— merge the two sorted halves together

void mergeSort(int A[], int left, iInt right)
if(left<right){
iInt center = (left+right)/2;
mergeSort(A, left, center);
mergeSort(A, center + 1, right);
merge(A, left, center+l, right);

3 § | 4]

L] LI LI L]
3 2 4 6 | 3 2 3
2 5 4 6 | 3 iy

9e¢ bplet http://www.cosc.canterbury.ac.nz/people/mukundan/dsal/MSort.html

7

Merging

* Input: two sorted array A and B
* Qutput: an output sorted array C

 Three counters: Actr, Bctr, and Cctr
—initially set to the beginning of their respective arrays

1113|2426 2 |15(27(38
! ! 1

Actr Betr Cctr

—The smaller of A[Actr] and B[Bctr] is copied to the next entry in C, and
the appropriate counters are increased.

— As soon as each of the list becomes empty, the remainder of the other
list is copied to C.

Merge: Example

1 13|24 |26 2 1152738
T T 1
Actr Beitr Cetr
1 11324 26 2 | 15|27 38 2
T T i
Actr Betr Crtr
1324 26 2 11527 38 13
) 1)
Actr Betr Cctr
13124 |26 2 1152738 13115
)))
Actr Betr Cctr
13124 | 26 15127 | 38 13115124
T T)
Actr Betr Cetr

Example: Merge (2)

13124 | 26 15127 | 38 13115 |24
T T T
Actr Betr Cctr
13 (24| 26 15|27 | 38 1315|124 | 26
)) T
Artr Retr Cctr
13124 | 26 15|27 | 38 1311524 26|27 | 38
T 1
Actr Betr

Cctr

10

ArraylList
« ArrayList

— A class in the standard Java libraries that can hold
any type of object

— An object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

* In general, an ArrayL ISt serves the same
purpose as an array, except that an
ArrayList can change length while the
program is running

11

Merge: Java Code — Lists Implementations

void merge(ArrayList<E> L1, ArrayList<E> L2, Comparator<E> c, ArrayList<E> rList){
while (IL1.isEmpty() && !L2.isEmpty()) {

if(c.compare(L1.get(0), L2.get(0)) <= 0){
rList.add(L1.get(0));
L1.remove(0);

}else {
rList.add(L2.get(0));
L2.remove(0);

}

}
while(IL1.isEmpty()){

rList.add(L1.get(0));
L1.remove(0);

}

while(!L2.isEmpty()){
rList.add(L2.get(0));
L2.remove(0);

12

Merge: Analysis

 Running time analysis:

— Merge takes O(m, + m,), where m; and m, are the
sizes of the two sub-arrays.

e Space requirement:

— merging two sorted lists requires linear extra
memory

— additional work to copy to the temporary array
and back

13

Analysis of Merge Sort — First Approach

*Merge sort tree has O(log n) levels.
*The time spent at any node excludes the recursive call

*Merge sort tree has 2/ nodes at depth i.
*The number of elements at each node in depth i is n/Zi.

T A
nil [
lgn + 1
f\ f"ﬂf{\ levels
n /4 n /4 n /4 nid -------

cn
Hen i2)=en
den fd)=cn
¥len B) = cn

nichl=cn

cn (lgn + 1)
=8in lgn)

14

Analysis of Merge Sort - Second Approach

recurrence relation

void mergeSort(int A[], int left, int right) T(N)

iT(left<right){ e()
int center = (left+right)/2; e()
mergeSort(A, left, center); T(N/2)
mergeSort(A, center + 1, right); T(N/2)

| rﬁé?'g'é (A, left, cente Fl'l'"FTg'ﬁES H a(\)

+

15

Analysis of Merge Sort - Second Approach

 Let T(N) denote the worst-case running time of
mergesort to sort N numbers.

 Assume that N is a power of 2.

e Divide step: O(1) time
e Conquer step: 2 x T(N/2) time
e Combine step: O(N) time

e Recurrence equation:
T(1)=1
T(N) =2T(N/2) + N

16

Solving the Recurrence

Since N=2k, we have k=log, n

T(N)=2T(%)+N

N, N
:2(2T(Z)+?)+N T(N):sz(%)_l_kN
N
=4T(Z)+2N — N+ N I(n N
=4(2T(%)+%)+2N =0O(Nlog N)
:8T(%)+3N:---

N
= 2"T(?)+kN

17

	Merge Sort ��cse2011�section 11.1 of textbook
	Sorting Problem
	Goals
	Merge Sort: Main Idea
	Dividing
	Merge Sort: Algorithm
	Slide Number 7
	Merging
	Merge: Example
	Example: Merge (2)
	ArrayList
	Merge: Java Code – Lists Implementations
	Merge: Analysis
	Analysis of Merge Sort – First Approach
	Analysis of Merge Sort - Second Approach�recurrence relation
	Slide Number 16
	Solving the Recurrence

