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Sorting Problem

* |Input:
1. A sequence of n object
e Storedin alink list or an array.

2. A comparator that defines a total order on the
objects.

e Output:

— An ordered representation of these objects.



Goals

e Divide-and-conquer approach
e Solving recurrences
* One more sorting algorithm



Merge Sort: Main Idea

Based on divide-and-conquer strategy
e Divide the list into two smaller lists of about equal sizes.

e Sort each smaller list recursively. (base of recurrence ?)
e Merge the two sorted lists to get one sorted list.

Questions:
e How do we divide the list? How much time needed?

* How do we merge the two sorted lists? How much time
needed?




Dividing

e If the input list is an array A[0..N-1]: dividing
takes O(1) time:

— Represent a sub-array by two integers left and right.

— To divide A[left .. right], compute center=(left+right)/2 and
obtain A[left .. center] and A[center+1 .. right]

e If the input list is a linked list, dividing takes
®(N) time:

— Scan the linked list, stop at the [ N/2.th entry and cut the
link.



Merge Sort: Algorithm

e Divide-and-conquer strategy

— recursively sort the first half and the second half
— merge the two sorted halves together

void mergeSort(int A[], int left, iInt right)
if(left<right){
iInt center = (left+right)/2;
mergeSort(A, left, center);
mergeSort(A, center + 1, right);
merge(A, left, center+l, right);
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Merging

* Input: two sorted array A and B
* Qutput: an output sorted array C

 Three counters: Actr, Bctr, and Cctr
—initially set to the beginning of their respective arrays

1113|2426 2 |15(27(38
! ! 1

Actr Betr Cctr

—The smaller of A[Actr] and B[Bctr] is copied to the next entry in C, and
the appropriate counters are increased.

— As soon as each of the list becomes empty, the remainder of the other
list is copied to C.



Merge: Example

1 13|24 |26 2 1152738
T T 1
Actr Beitr Cetr
1 11324 26 2 | 15|27 38 2
T T i
Actr Betr Crtr
1324 26 2 11527 38 13
) 1 )
Actr Betr Cctr
13124 |26 2 1152738 13115
) ) )
Actr Betr Cctr
13124 | 26 15127 | 38 13115124
T T )
Actr Betr Cetr




Example: Merge (2)

13124 | 26 15127 | 38 13115 |24
T T T
Actr Betr Cctr
13 (24| 26 15|27 | 38 1315|124 | 26
) ) T
Artr Retr Cctr
13124 | 26 15|27 | 38 1311524 26|27 | 38
T 1
Actr Betr

Cctr
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ArraylList
« ArrayList

— A class in the standard Java libraries that can hold
any type of object

— An object that can grow and shrink while your
program is running (unlike arrays, which have a
fixed length once they have been created)

* In general, an ArrayL ISt serves the same
purpose as an array, except that an
ArrayList can change length while the
program is running
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Merge: Java Code — Lists Implementations

void merge(ArrayList<E> L1, ArrayList<E> L2, Comparator<E> c, ArrayList<E> rList){
while (IL1.isEmpty() && !L2.isEmpty()) {

if(c.compare(L1.get(0), L2.get(0)) <= 0){
rList.add(L1.get(0));
L1.remove(0);

}else {
rList.add(L2.get(0));
L2.remove(0);

}

}
while(IL1.isEmpty()){

rList.add(L1.get(0));
L1.remove(0);

}

while(!L2.isEmpty()){
rList.add(L2.get(0));
L2.remove(0);
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Merge: Analysis

 Running time analysis:

— Merge takes O(m, + m,), where m; and m, are the
sizes of the two sub-arrays.

e Space requirement:

— merging two sorted lists requires linear extra
memory

— additional work to copy to the temporary array
and back

13



Analysis of Merge Sort — First Approach

*Merge sort tree has O(log n) levels.
*The time spent at any node excludes the recursive call

*Merge sort tree has 2/ nodes at depth i.
*The number of elements at each node in depth i is n/Zi.
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Analysis of Merge Sort - Second Approach

recurrence relation

void mergeSort(int A[], int left, int right) T(N)

iT(left<right){ e()
int center = (left+right)/2; e()
mergeSort(A, left, center); T(N/2)
mergeSort(A, center + 1, right); T(N/2)

| rﬁé?'g'é (A, left, cente Fl'l'"FTg'ﬁES H a(\)

+
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Analysis of Merge Sort - Second Approach

 Let T(N) denote the worst-case running time of
mergesort to sort N numbers.

 Assume that N is a power of 2.

e Divide step: O(1) time
e Conquer step: 2 x T(N/2) time
e Combine step: O(N) time

e Recurrence equation:
T(1)=1
T(N) =2T(N/2) + N
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Solving the Recurrence

Since N=2k, we have k=log, n

T(N)=2T(%)+N

N, N
:2(2T(Z)+?)+N T(N):sz(%)_l_kN
N
=4T(Z)+2N — N+ N I(n N
=4(2T(%)+%)+2N =0O(Nlog N)
:8T(%)+3N:---

N
= 2"T(?)+kN
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