Quick Sort

cse2011 section 11.2 of textbook

Quick Sort

- Fastest known sorting algorithm in practice
- Average case: O(N log N)
- Worst case: O(N²)
 - But the worst case can be made exponentially unlikely.
- Another **divide-and-conquer** recursive algorithm, like merge sort.

Quick Sort: Main Idea

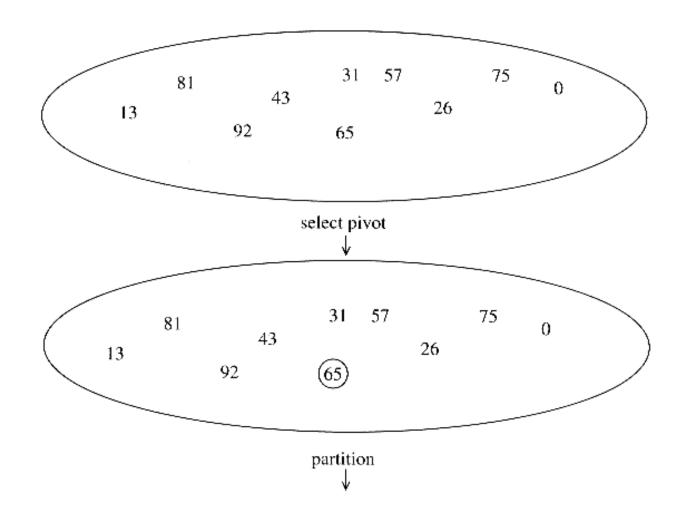
- If the number of elements in S is 0 or 1, then return (base case/base of the recurrence).
- 2. Pick any element v in S (called the pivot).
- Partition the elements in S except v into two <u>disjoint</u> groups:

1.
$$S_1 = \{x \in S - \{v\} \mid x \le v\}$$

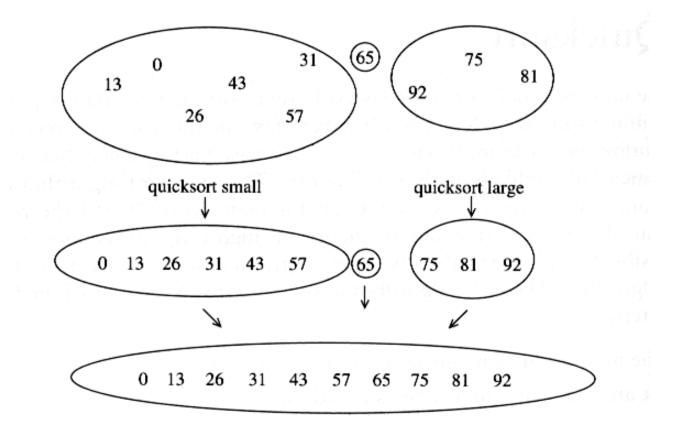
2.
$$S_2 = \{x \in S - \{v\} \mid x \ge v\}$$

4. Return {QuickSort(S_1) + V + QuickSort(S_2)}

Quick Sort: Example



Example of Quick Sort...



Issues To Consider

• How to pick the pivot?

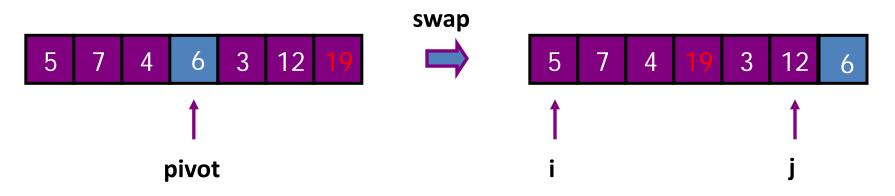
- Many methods (discussed later)

• How to partition?

- Several methods exist.
- The one we consider is known to give good results and to be easy and efficient.
- We discuss the partition strategy first.

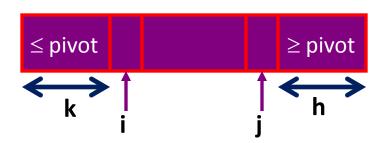
Partitioning Strategy

- We want to partition array A[left .. right].
- For now, assume that pivot = A[(left+right)/2].
- First, get the *pivot* element out of the way by swapping it with the last element (swap pivot and A[right]).
- Let i start at the first element and j start at the nextto-last element (i = left, j = right - 1)

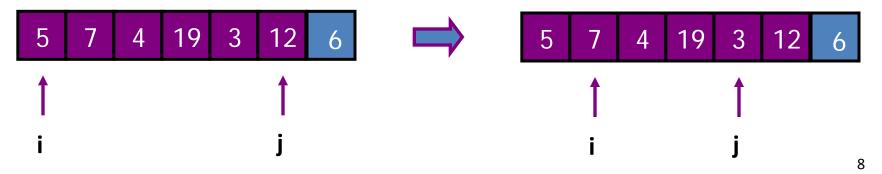


Partitioning Strategy

- Want to have
 - $A[k] \le pivot$, for k < i
 - $A[h] \ge pivot$, for h > j
- When i < j



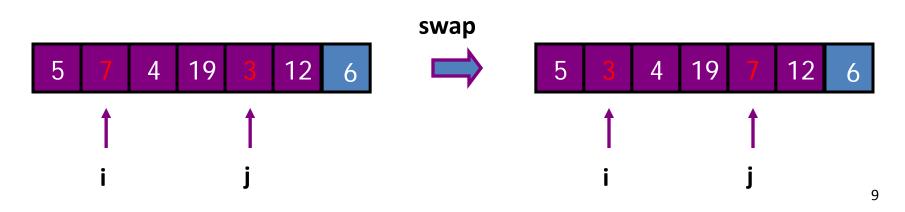
- Move i right, skipping over elements <u>smaller</u> than the pivot
- Move j left, skipping over elements greater than the pivot
- When both i and j have stopped
 - $A[i] \ge pivot$
 - A[j] ≤ pivot ⇒ A[i] and A[j] should now be swapped



Partitioning Strategy (2)

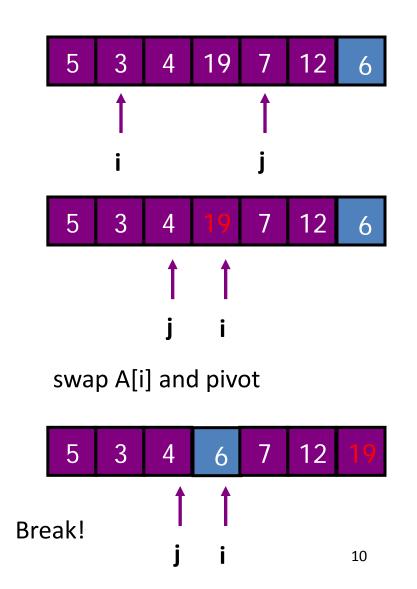
- When i and j have stopped and i is to the left of j (thus legal)
 - Swap A[i] and A[j]
 - The large element is pushed to the right and the small element is pushed to the left
 - After swapping
 - $A[i] \le pivot$
 - $A[j] \ge pivot$

Repeat the process until i and j cross



Partitioning Strategy (3)

- When i and j have crossed
 swap A[i] and pivot
- Result:
 - $A[k] \le pivot$, for k < i
 - $A[h] \ge pivot$, for h > j



Picking the Pivot

• There are several ways to pick a pivot.

• Objective: Choose a pivot so that we will get 2 partitions of (almost) equal size.

Picking the Pivot (2)

- Use the **first element** as pivot
 - if the input is random, ok.
 - if the input is presorted (or in reverse order)
 - all the elements go into S₂ (or S₁).
 - this happens consistently throughout the recursive calls.
 - results in O(N²) behavior (we analyze this case later).
- Choose the pivot **randomly**
 - generally safe,
 - but <u>random number generation can be expensive</u> and does not reduce the running time of the algorithm.

Picking the Pivot (3)

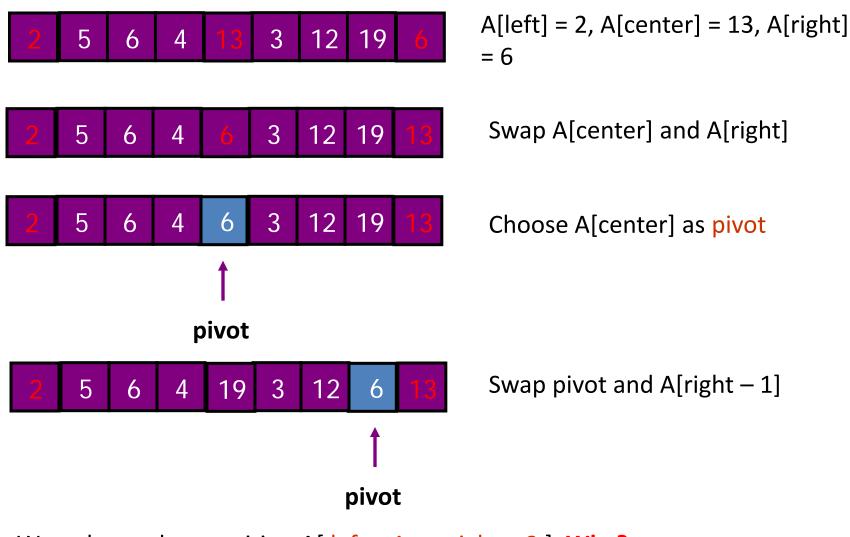
- Use the **median** of the array (ideal pivot)
 - The $\lceil N/2 \rceil$ th largest element
 - Partitioning always cuts the array into roughly half
 - An optimal quick sort (O(N log N))
 - However, hard to find the exact median
- Median-of-three partitioning
 - eliminates the bad case for sorted input.
 - reduces the number of comparisons by 14%.

Median of Three Method

- Compare just three elements: the leftmost, rightmost and center
 - Swap these elements if necessary so that
 - A[left] = Smallest
 - A[right] = Largest
 - A[center] = Median of three
 - Pick A[center] as the pivot.
 - Swap A[center] and A[right 1] so that the pivot is at the second last position (why?)

// Place pivot at position right - 1
swap(a[center], a[right - 1]);

Median of Three: Example



We only need to partition A[left + 1, ..., right – 2]. Why?

Quick Sort Summary

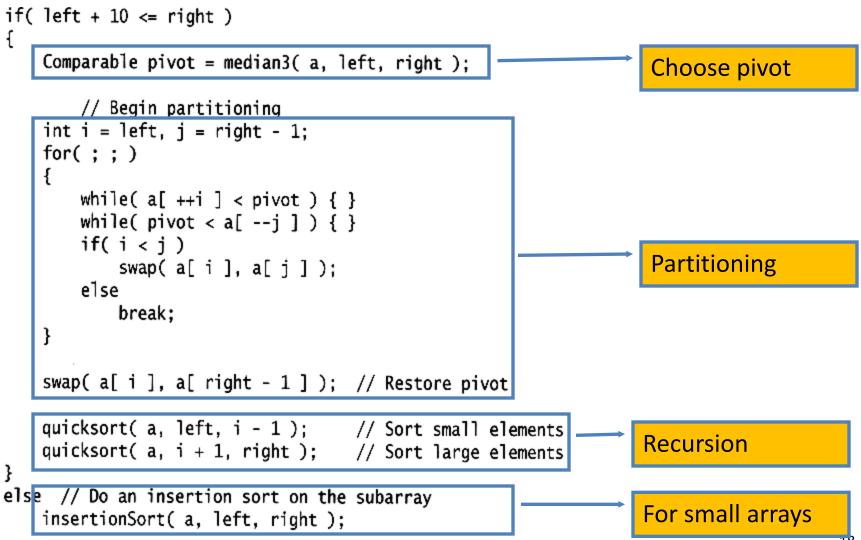
Recursive case: QuickSort(a, left, right)
 pivot = median3(a, left, right);
 Partition a[left ... right] into a[left ... i-1], i, a[i+1 ... right];
 QuickSort(a, left, i-1);
 QuickSort(a, i+1, right);

- **Base case**: when do we stop the recursion?
 - In theory, when left >= right.
 - In practice, ...

Small Arrays

- For very small arrays, quick sort does not perform as well as insertion sort
- Do not use quick sort recursively for small arrays
 - Use a sorting algorithm that is efficient for small arrays, such as insertion sort.
- When using quick sort recursively, switch to insertion sort when the sub-arrays have between 5 to 20 elements (10 is usually good).
 - saves about 15% in the running time.
 - avoids taking the median of three when the sub-array has only 1 or 2 elements.

Quick Sort: Pseudo-code



Partitioning Part

- The partitioning code we just saw works only if pivot is picked as median-of-three.
 - A[left] \leq pivot and A[right] \geq pivot
 - Need to partition only
 A[left + 1, ..., right 2]
- j will not run past the beginning
 - because A[left] \leq pivot
- i will not run past the end
 - because A[right-1] = pivot

```
int i = left, j = right - 1;
for(;;)
{
    while( a[ ++i ] < pivot ) { }
    while( pivot < a[ --j ] ) { }
    if( i < j )
        swap( a[ i ], a[ j ] );
    else
        break;
}</pre>
```

Homework

- Assume the pivot is chosen as the middle element of an array: pivot = a[(left+right)/2].
- Rewrite the partitioning code and the whole quick sort algorithm.

Quick Sort Faster Than Merge Sort

- Both quick sort and merge sort take O(N log N) in the average case.
- But quick sort is faster in the average case:
 - The inner loop consists of an increment/decrement (by 1, which is fast), a test and a jump.
 - There is no extra juggling as in merge sort.
 int i = left, j = right 1;
 for(;;)
 {
 while(a[++i] < pivot) { }
 while(pivot < a[--j]) { }
 if(i < j)
 swap(a[i], a[j]);
 else
 break;</pre>

Analysis

Assumptions:

- A random pivot (no median-of-three partitioning)
- No cutoff for small arrays (to make it simple)
- 1. If the number of elements in S is 0 or 1, then return (base case).
- 2. Pick an element v in **S** (called the **pivot**).
- Partition the elements in S except v into two disjoint groups:

1.
$$S_1 = \{x \in S - \{v\} \mid x \le v\}$$

2.
$$S_2 = \{x \in S - \{v\} \mid x \ge v\}$$

4. Return {QuickSort(S_1) + v + QuickSort(S_2)}

Analysis (2)

- Running time
 - pivot selection: constant time, i.e. O(1)
 - partitioning: linear time, i.e. O(N)
 - running time of the two recursive calls

- T(N) = T(i) + T(N i 1) + cN
 - i: number of elements in S1
 - c is a constant

Worst-Case Scenario

- What will be the **worst case**?
 - The pivot is the smallest element, all the time
 - Partition is always unbalanced

$$T(N) = T(N-1) + cN$$

$$T(N-1) = T(N-2) + c(N-1)$$

$$T(N-2) = T(N-3) + c(N-2)$$

$$\vdots$$

$$T(2) = T(1) + c(2)$$

$$T(N) = T(1) + c\sum_{i=2}^{N} i = O(N^{2})$$

Best-Case Scenario

- What will be the **best case**?
 - Partition is perfectly balanced.
 - Pivot is always in the middle (median of the array).
- T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN
- This recurrence is similar to the merge sort recurrence.
- The result is O(NlogN).

Average-Case Analysis

- Assume that each of the sizes for S_1 is equally likely \Rightarrow has probability 1/N.
- This assumption is valid for the pivoting and partitioning strategy just discussed (but may not be for some others),
- On average, the running time is O(N log N).
- Proof: pp 272–273, Data Structures and Algorithm Analysis by M. A. Weiss, 2nd edition

Next week ...

- Arrays (review) and Linked Lists (3.2, 3.3)
- Stacks, queues (Chapter 5)