
Quick Sort

cse2011
section 11.2 of textbook

1

Quick Sort

• Fastest known sorting algorithm in practice
• Average case: O(N log N)
• Worst case: O(N2)

– But the worst case can be made exponentially unlikely.

• Another divide-and-conquer recursive algorithm, like
merge sort.

2

Quick Sort: Main Idea

1. If the number of elements in S is 0 or 1, then return
(base case/base of the recurrence).

2. Pick any element v in S (called the pivot).
3. Partition the elements in S except v into two

disjoint groups:
1. S1 = {x ∈ S – {v} | x ≤ v}

2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

3

Quick Sort: Example

4

Example of Quick Sort...

5

Issues To Consider

• How to pick the pivot?
– Many methods (discussed later)

• How to partition?
– Several methods exist.
– The one we consider is known to give good results and to be

easy and efficient.
– We discuss the partition strategy first.

6

Partitioning Strategy
• We want to partition array A[left .. right].
• For now, assume that pivot = A[(left+right)/2].
• First, get the pivot element out of the way by

swapping it with the last element (swap pivot and
A[right]).

• Let i start at the first element and j start at the next-
to-last element (i = left, j = right – 1)

7

pivot i j

5 7 4 6 3 12 19 5 7 4 6 3 12 19

swap

Partitioning Strategy
• Want to have

– A[k] ≤ pivot, for k < i
– A[h] ≥ pivot, for h > j

• When i < j
– Move i right, skipping over elements smaller than the

pivot
– Move j left, skipping over elements greater than the pivot
– When both i and j have stopped

• A[i] ≥ pivot
• A[j] ≤ pivot ⇒ A[i] and A[j] should now be swapped

8
i j

5 7 4 6 3 12 19

i j

5 7 4 6 3 12 19

i j

≤ pivot ≥ pivot

k h

Partitioning Strategy (2)

• When i and j have stopped and i is to the left of
j (thus legal)
– Swap A[i] and A[j]

• The large element is pushed to the right and the small
element is pushed to the left

– After swapping
• A[i] ≤ pivot
• A[j] ≥ pivot

– Repeat the process until i and j cross

9

swap

i j

5 7 4 6 3 12 19

i j

5 3 4 6 7 12 19

Partitioning Strategy (3)

• When i and j have crossed
– swap A[i] and pivot

• Result:
– A[k] ≤ pivot, for k < i
– A[h] ≥ pivot, for h > j

10

i j

5 3 4 6 7 12 19

i j

5 3 4 6 7 12 19

i j

5 3 4 6 7 12 19

swap A[i] and pivot

Break!

Picking the Pivot

• There are several ways to pick a pivot.

• Objective: Choose a pivot so that we will get 2
partitions of (almost) equal size.

Picking the Pivot (2)
• Use the first element as pivot

– if the input is random, ok.
– if the input is presorted (or in reverse order)

• all the elements go into S2 (or S1).
• this happens consistently throughout the recursive calls.
• results in O(N2) behavior (we analyze this case later).

• Choose the pivot randomly
– generally safe,
– but random number generation can be expensive and

does not reduce the running time of the algorithm.

12

Picking the Pivot (3)
• Use the median of the array (ideal pivot)

– The N/2 th largest element
– Partitioning always cuts the array into roughly half
– An optimal quick sort (O(N log N))
– However, hard to find the exact median

• Median-of-three partitioning

– eliminates the bad case for sorted input.
– reduces the number of comparisons by 14%.

13

Median of Three Method
• Compare just three elements: the leftmost, rightmost and center

– Swap these elements if necessary so that
• A[left] = Smallest
• A[right] = Largest
• A[center] = Median of three

– Pick A[center] as the pivot.
– Swap A[center] and A[right – 1] so that the pivot is at the second last

position (why?)

14

Median of Three: Example

15

pivot

5 6 4

6

3 12 19 2 13 6

5 6 4 3 12 19 2 6 13

A[left] = 2, A[center] = 13, A[right]
= 6

Swap A[center] and A[right]

5 6 4 3 12 19 2 13

pivot

6 5 6 4 3 12 19 2 13

Choose A[center] as pivot

Swap pivot and A[right – 1]

We only need to partition A[left + 1, …, right – 2]. Why?

Quick Sort Summary

• Recursive case: QuickSort(a, left, right)
pivot = median3(a, left, right);
Partition a[left … right] into a[left … i-1], i, a[i+1 … right];
QuickSort(a, left, i-1);
QuickSort(a, i+1, right);

• Base case: when do we stop the recursion?

– In theory, when left >= right.
– In practice, …

Small Arrays
• For very small arrays, quick sort does not perform as

well as insertion sort
• Do not use quick sort recursively for small arrays

– Use a sorting algorithm that is efficient for small arrays,
such as insertion sort.

• When using quick sort recursively, switch to insertion
sort when the sub-arrays have between 5 to 20
elements (10 is usually good).
– saves about 15% in the running time.
– avoids taking the median of three when the sub-array has

only 1 or 2 elements.

 17

Quick Sort: Pseudo-code

18
For small arrays

Recursion

Choose pivot

Partitioning

Partitioning Part
• The partitioning code we just

saw works only if pivot is picked
as median-of-three.
– A[left] ≤ pivot and A[right] ≥ pivot
– Need to partition only
 A[left + 1, …, right – 2]

• j will not run past the beginning

– because A[left] ≤ pivot

• i will not run past the end
– because A[right-1] = pivot

19

Homework

• Assume the pivot is chosen as the middle element of
an array: pivot = a[(left+right)/2].

• Rewrite the partitioning code and the whole quick
sort algorithm.

Quick Sort Faster Than Merge Sort
• Both quick sort and merge sort take O(N log N)

in the average case.
• But quick sort is faster in the average case:

– The inner loop consists of an increment/decrement (by 1,
which is fast), a test and a jump.

– There is no extra juggling as in merge sort.

21

inner loop

22

Analysis
Assumptions:
• A random pivot (no median-of-three partitioning)
• No cutoff for small arrays (to make it simple)

1. If the number of elements in S is 0 or 1, then return

(base case).
2. Pick an element v in S (called the pivot).
3. Partition the elements in S except v into two

disjoint groups:
1. S1 = {x ∈ S – {v} | x ≤ v}
2. S2 = {x ∈ S – {v} | x ≥ v}

4. Return {QuickSort(S1) + v + QuickSort(S2)}

Analysis (2)
• Running time

– pivot selection: constant time, i.e. O(1)
– partitioning: linear time, i.e. O(N)
– running time of the two recursive calls

• T(N)= T(i) + T(N – i – 1) + cN

– i: number of elements in S1
– c is a constant

23

Worst-Case Scenario
• What will be the worst case?

– The pivot is the smallest element, all the time
– Partition is always unbalanced

24

Best-Case Scenario
• What will be the best case?

– Partition is perfectly balanced.
– Pivot is always in the middle (median of the array).

• T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN

• This recurrence is similar to the merge sort

recurrence.
• The result is O(NlogN).

25

Average-Case Analysis

• Assume that each of the sizes for S1 is equally likely
⇒ has probability 1/N.

• This assumption is valid for the pivoting and
partitioning strategy just discussed (but may not be
for some others),

• On average, the running time is O(N log N).
• Proof: pp 272–273, Data Structures and Algorithm

Analysis by M. A. Weiss, 2nd edition

26

Next week …

• Arrays (review) and Linked Lists (3.2, 3.3)
• Stacks, queues (Chapter 5)

27

	Quick Sort ��cse2011�section 11.2 of textbook
	Quick Sort
	Quick Sort: Main Idea
	Quick Sort: Example
	Example of Quick Sort...
	Issues To Consider
	Partitioning Strategy
	Partitioning Strategy
	Partitioning Strategy (2)
	Partitioning Strategy (3)
	Picking the Pivot
	Picking the Pivot (2)
	Picking the Pivot (3)
	Median of Three Method
	Median of Three: Example
	Quick Sort Summary
	Small Arrays
	Quick Sort: Pseudo-code
	Partitioning Part
	Homework
	Quick Sort Faster Than Merge Sort
	Analysis
	Analysis (2)
	Worst-Case Scenario
	Best-Case Scenario
	Average-Case Analysis
	Next week …

