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Quick Sort 

• Fastest known sorting algorithm in practice 
• Average case: O(N log N) 
• Worst case: O(N2) 

– But the worst case can be made exponentially unlikely. 

• Another divide-and-conquer recursive algorithm, like 
merge sort. 
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Quick Sort: Main Idea 

1. If the number of elements in S is 0 or 1, then return 
(base case/base of the recurrence). 

2. Pick any element v in S (called the pivot). 
3. Partition the elements in S except v into two 

disjoint groups: 
1.  S1 = {x ∈ S – {v} | x ≤ v} 

2.  S2 = {x ∈ S – {v} | x ≥ v} 

4. Return {QuickSort(S1) + v + QuickSort(S2)} 
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Quick Sort: Example 
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Example of Quick Sort... 
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Issues To Consider 

• How to pick the pivot? 
– Many methods (discussed later) 

• How to partition? 
– Several methods exist. 
– The one we consider is known to give good results and to be 

easy and efficient. 
– We discuss the partition strategy first. 
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Partitioning Strategy 
• We want to partition array A[left .. right]. 
• For now, assume that pivot = A[(left+right)/2]. 
• First, get the pivot element out of the way by 

swapping it with the last element (swap pivot and 
A[right]). 

• Let i start at the first element and j start at the next-
to-last element (i = left, j = right – 1) 
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pivot i j 

5 7 4 6 3 12 19 5 7 4 6 3 12 19 

swap 



Partitioning Strategy 
• Want to have 

– A[k] ≤ pivot, for k < i 
– A[h] ≥ pivot, for h > j 

• When i < j 
– Move i right, skipping over elements smaller than the 

pivot 
– Move j left, skipping over elements greater than the pivot 
– When both i and j have stopped 

• A[i] ≥ pivot 
• A[j] ≤ pivot   ⇒ A[i] and A[j] should now be swapped 
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i j 

5 7 4 6 3 12 19 

i j 

5 7 4 6 3 12 19 

 

i j 

≤ pivot ≥ pivot 

k h 



Partitioning Strategy (2) 

• When i and j have stopped and i is to the left of 
j (thus legal) 
– Swap A[i] and A[j] 

• The large element is pushed to the right and the small 
element is pushed to the left 

– After swapping 
• A[i] ≤ pivot 
• A[j] ≥ pivot 

– Repeat the process until i and j cross 
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swap 

i j 

5 7 4 6 3 12 19 

i j 

5 3 4 6 7 12 19 



Partitioning Strategy (3) 

• When i and j have crossed 
– swap A[i] and pivot 

• Result: 
– A[k] ≤ pivot, for k < i 
– A[h] ≥ pivot, for h > j 
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i j 

5 3 4 6 7 12 19 

i j 

5 3 4 6 7 12 19 

i j 

5 3 4 6 7 12 19 

swap A[i] and pivot  

Break! 



Picking the Pivot 

• There are several ways to pick a pivot. 
 

• Objective: Choose a pivot so that we will get 2 
partitions of (almost) equal size. 
 
 



Picking the Pivot (2) 
• Use the first element as pivot 

– if the input is random, ok. 
– if the input is presorted (or in reverse order) 

• all the elements go into S2 (or S1). 
• this happens consistently throughout the recursive calls. 
• results in O(N2) behavior (we analyze this case later). 

• Choose the pivot randomly 
– generally safe, 
– but random number generation can be expensive and 

does not reduce the running time of the algorithm. 
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Picking the Pivot (3) 
• Use the median of the array (ideal pivot) 

– The N/2 th largest element 
– Partitioning always cuts the array into roughly half 
– An optimal quick sort (O(N log N)) 
– However, hard to find the exact median 

 
• Median-of-three partitioning 

– eliminates the bad case for sorted input. 
– reduces the number of comparisons by 14%. 
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Median of Three Method 
• Compare just three elements: the leftmost, rightmost and center 

– Swap these elements if necessary so that  
• A[left]  =  Smallest 
• A[right]  =  Largest 
• A[center]   =  Median of three 

– Pick A[center] as the pivot. 
– Swap A[center] and A[right – 1] so that the pivot is at the second last 

position (why?) 
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Median of Three: Example 
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pivot 

5 6 4 

6 

3 12 19 2 13 6 

5 6 4 3 12 19 2 6 13 

A[left] = 2, A[center] = 13, A[right] 
= 6 

Swap A[center] and A[right] 

5 6 4 3 12 19 2 13 

pivot 

6 5 6 4 3 12 19 2 13 

Choose A[center] as pivot 

Swap pivot and A[right – 1] 

We only need to partition A[ left + 1, …, right – 2 ]. Why? 



Quick Sort Summary 

• Recursive case: QuickSort( a, left, right ) 
pivot = median3( a, left, right ); 
Partition a[left … right] into a[left … i-1], i, a[i+1 … right]; 
QuickSort( a, left, i-1 ); 
QuickSort( a, i+1, right ); 

 
• Base case: when do we stop the recursion? 

– In theory, when left >= right. 
– In practice, … 



Small Arrays 
• For very small arrays, quick sort does not perform as 

well as insertion sort 
• Do not use quick sort recursively for small arrays 

– Use a sorting algorithm that is efficient for small arrays, 
such as insertion sort. 

• When using quick sort recursively, switch to insertion 
sort when the sub-arrays have between 5 to 20 
elements (10 is usually good). 
– saves about 15% in the running time. 
– avoids taking the median of three when the sub-array has 

only 1 or 2 elements. 
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Quick Sort: Pseudo-code 
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For small arrays 

Recursion 

Choose pivot 

Partitioning 



Partitioning Part 
• The partitioning code we just 

saw works only if pivot is picked 
as median-of-three.  
– A[left] ≤ pivot and A[right] ≥ pivot 
– Need to partition only  
    A[left + 1, …, right – 2] 

 
• j will not run past the beginning 

– because A[left] ≤ pivot 
 

• i will not run past the end 
– because A[right-1] = pivot 
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Homework 

• Assume the pivot is chosen as the middle element of 
an array: pivot = a[(left+right)/2]. 

• Rewrite the partitioning code and the whole quick 
sort algorithm. 



Quick Sort Faster Than Merge Sort 
• Both quick sort and merge sort take O(N log N) 

in the average case. 
• But quick sort is faster in the average case: 

– The inner loop consists of an increment/decrement (by 1, 
which is fast), a test and a jump.  

– There is no extra juggling as in merge sort. 
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inner loop 
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Analysis 
Assumptions: 
• A random pivot (no median-of-three partitioning) 
• No cutoff for small arrays ( to make it simple) 

 
1. If the number of elements in S is 0 or 1, then return 

(base case). 
2. Pick an element v in S (called the pivot). 
3. Partition the elements in S except v into two 

disjoint groups: 
1. S1 = {x ∈ S – {v} | x ≤ v} 
2. S2 = {x ∈ S – {v} | x ≥ v} 

4. Return {QuickSort(S1) + v + QuickSort(S2)} 



Analysis (2) 
• Running time 

– pivot selection: constant time, i.e. O(1) 
– partitioning: linear time, i.e. O(N) 
– running time of the two recursive calls  

 
• T(N)= T(i) + T(N – i – 1) + cN 

– i: number of elements in S1 
– c is a constant 
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Worst-Case Scenario 
• What will be the worst case? 

– The pivot is the smallest element, all the time 
– Partition is always unbalanced 
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Best-Case Scenario 
• What will be the best case? 

– Partition is perfectly balanced. 
– Pivot is always in the middle (median of the array). 

 
• T(N) = T(N/2) + T(N/2) + cN = 2T(N/2) + cN  

 
• This recurrence is similar to the merge sort 

recurrence. 
• The result is O(NlogN). 
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Average-Case Analysis 

• Assume that each of the sizes for S1 is equally likely 
⇒ has probability 1/N. 

• This assumption is valid for the pivoting and 
partitioning strategy just discussed (but may not be 
for some others), 

• On average, the running time is O(N log N). 
• Proof: pp 272–273, Data Structures and Algorithm 

Analysis by M. A. Weiss, 2nd edition 
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Next week … 

• Arrays (review) and Linked Lists (3.2, 3.3) 
• Stacks, queues (Chapter 5) 
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