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Queues: FIFO

Insertions and removals follow the Fist-In First-
Out rule:

— Insertions: at the rear of the queue
— Removals: at the front of the queue

Applications, examples:
— Waiting lists
— Access to shared resources (e.g., printer)



Queue ADT

Data stored: arbitrary objects
Operations:

— enqueue(object): inserts an element at the end of the
queue

— object dequeue(): removes and returns the element at
the front of the queue

— object front(): returns the element at the front without
removing it

Execution of dequeue() or front() on an empty queue
— throws EmptyQueueException
Another useful operation:

— boolean isEmpty(): returns true if the queue is empty;
false otherwise.



Queue Operations

enqueue(object)
object dequeue()
object front()
boolean isEmpty()

int size(): returns the
number of elements in the
gueue

Any others? Depending on
implementation and/or
applications

public interface Queue {
public int size();
public boolean isEmpty();
public Object front()

throws EmptyQueueException;
public Object dequeue()

throws

EmptyQueueException;

public void enqueue (Object
obj);
}




Operation
enqueue(b)
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Array-based Implementation

An array Q of maximum size N

We need to decide where the front and rear are.
How to enqueue, dequeue?

Running time of enqueue?

Running time of dequeue?




Array-based Implementation
Not Efficient

* Frontis fixed as the first element.

 We only keep one index, t, to keep track of the rear.
e enqueue is O(?).

e dequeue is O(?).
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Array-based Implementation

 An array Q of maximum size N

 Need to keep track the front and rear of the
gueue:

f: index of the front object
r: index immediately past the rear element
 Note: Q[r] is empty (does not store any object)
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Array-based Implementation

Front element: Q|[f]
Rear element: Q[r — 1]
Queue is empty: f=r
Queue size: r—f

How to dequeue?

How to enqueue?




Dequeue() and Enqueue()

Algorithm dequeue():
if (isEmpty())
throw QueueEmptyException;
temp = Q|[f];
f=r+1;

return temp;

Algorithm enqueue(object):
if (r==N)

throw QueueFullException;
Q|r] = object;
r=r+1;
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It is assumed that f £ r. What is the problem?

10




Circular Array Implementation
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 Analogy:  Incrementingf, r
A snake chases its tail f=(f+1)modN
r=(r+1)modN
* Front element: Q[f] mod: Java operator “%”

Rear element: Q[r — 1] _ _
It is the remainder after an

integral division.

f <ris not a valid assumption anymore. "




Circular Array Implementation (2)
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Queue size =
(N—f+r)modN

—> verify this

Queue is empty: f=r
When r reaches and

overlaps with f, the queue is
full: r=f

e To distinguish between
empty and full states, we
impose a constraint: Q can
hold at most N — 1 objects
(one cell is wasted). So r
never overlaps with f,
except when the queue is
empty.
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Pseudo-code

Algorithm enqueue(object):
if (size() == N —1)

throw QueueFullException;
Q[r] = object;
r=(r+1) modN;

Algorithm dequeue():
if (isEmpty())

throw QueueEmptyException;

temp = Qlf];
f=(f+1) modN;
return temp;
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Pseudo-code (2)

Algorithm front():
if (isEmpty())
throw QueueEmptyException;

return Q[f];

Algorithm isEmpty():
return (f = r);

Algorithm size():
return ((N —f+ r) mod N);

Homework: Remove the

constraint “Q can hold at

most N — 1 objects”. That is,
Q can store up to N objects.

Implement the Queue ADT
using a circular array.

Note: there is no
corresponding built-in Java
class for queue ADT
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Analysis of Circular Array Implementation

Performance
* Each operation runs in O(1) time

Limitation

e The maximum size N of the queue is fixed
e How to determine N?

e Alternatives?

— Extendable arrays
— Linked lists (singly or doubly linked??7?)
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Singly or Doubly Linked?

e Singly linked list

public static class Node

{

private Object data;
private Node next;

Needs less space.

Simpler code in some cases.

Insertion at tail takes O(n).

 Doubly linked list

public static class DNode

{
private Object data;

private Node prev;
private Node next;

 Better running time in many
cases (discussed before).
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Implementing a Queue with a Singly Linked
List

__________________________________________________________________________________________________

 Head of the list = rear of the queue (enqueue)
e Tail of the list = front of the queue (dequeue)
e |s this efficient?
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dequeue(): Removing at the Head
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» inserting at the head is just as easy

Running time = ?
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enqueue(): Inserting at the Tail

.« create a new node
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Method enqueue() in Java

public void enqueue(Object obj) {

Node node = new Node();
node.setElement(obj);
node.setNext(null);  // node will be new tail node

if (size == 0)

head = node; // special case of a previously empty queue
else

tail.setNext(node); // add node at the tail of the list
tail = node; // update the reference to the tail node

Size++;
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Method dequeue() in Java

public Object dequeue() throws QueueEmptyException {
Object obj;
if (size ==0)
throw new QueueEmptyException("Queue is empty.");
obj = head.getElement();
head = head.getNext();
Size—;
if (size == 0)
tail = null; //the queue is now empty
return obj;
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Analysis of Implementation with Singly-Linked
Lists

e Each methods runsin O(1) time

 Note: Removing at the tail of a singly-linked list
requires O(n) time. Avoid this!

Comparison with array-based implementation:

 No upper bound on the size of the queue (subject to
memory availability)

e More space used per element (next pointer)

 |Implementation is more complicated (pointer
manipulations)

e Method calls consume time (setNext, getNext, etc.)
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Homework

* |n the doubly linked list implementation, we use two
dummy nodes, header and trailer, to make coding

simple.
e Why don’t we use two dummy nodes in the singly
linked list implementation?

e Hint: Implement the queue operations using a singly
linked list with two dummy nodes header and trailer.
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