
Queues

cse2011
section 5.2 of textbook

1

2

Queues: FIFO

• Insertions and removals follow the Fist-In First-
Out rule:

 – Insertions: at the rear of the queue
 – Removals: at the front of the queue

• Applications, examples:
 – Waiting lists
 – Access to shared resources (e.g., printer)
 – …

3

Queue ADT
• Data stored: arbitrary objects
• Operations:
 – enqueue(object): inserts an element at the end of the

 queue
 – object dequeue(): removes and returns the element at

 the front of the queue
 – object front(): returns the element at the front without

removing it

• Execution of dequeue() or front() on an empty queue
 → throws EmptyQueueException
• Another useful operation:
 – boolean isEmpty(): returns true if the queue is empty;

 false otherwise.

4

Queue Operations

• enqueue(object)
• object dequeue()
• object front()
• boolean isEmpty()
• int size(): returns the

number of elements in the
queue

• Any others? Depending on
implementation and/or
applications

public interface Queue {
public int size();
public boolean isEmpty();
public Object front()
 throws EmptyQueueException;
public Object dequeue()
 throws
 EmptyQueueException;
public void enqueue (Object

obj);
}

Queues 5

Queue Example
Operation Output Q
enqueue(5) – (5)
enqueue(3) – (5, 3)
dequeue() 5 (3)
enqueue(7) – (3, 7)
dequeue() 3 (7)
front() 7 (7)
dequeue() 7 ()
dequeue() “error” ()
isEmpty() true ()
enqueue(9) – (9)
enqueue(7) – (9, 7)
size() 2 (9, 7)
enqueue(3) – (9, 7, 3)
enqueue(5) – (9, 7, 3, 5)
dequeue() 9 (7, 3, 5)

Array-based Implementation

• An array Q of maximum size N
• We need to decide where the front and rear are.
• How to enqueue, dequeue?
• Running time of enqueue?
• Running time of dequeue?

6

Array-based Implementation
Not Efficient

• Front is fixed as the first element.
• We only keep one index, t, to keep track of the rear.
• enqueue is O(?).
• dequeue is O(?).

8

Array-based Implementation

• An array Q of maximum size N
• Need to keep track the front and rear of the

queue:
 f: index of the front object
 r: index immediately past the rear element
• Note: Q[r] is empty (does not store any object)

9

Array-based Implementation

• Front element: Q[f]
• Rear element: Q[r – 1]
• Queue is empty: f = r
• Queue size: r – f
• How to dequeue?
• How to enqueue?

10

Dequeue() and Enqueue()

Algorithm dequeue():
if (isEmpty())
 throw QueueEmptyException;
temp = Q[f];
f = f + 1;
return temp;

Algorithm enqueue(object):
if (r == N)
 throw QueueFullException;
Q[r] = object;
r = r + 1;

It is assumed that f ≤ r. What is the problem?

11

Circular Array Implementation

• Analogy:
 A snake chases its tail

• Front element: Q[f]
 Rear element: Q[r – 1]

• Incrementing f, r
 f = (f + 1) mod N
 r = (r + 1) mod N
 mod: Java operator “%”

 It is the remainder after an

integral division.

f ≤ r is not a valid assumption anymore.

12

Circular Array Implementation (2)

• Queue size =
 (N – f + r) mod N
 → verify this
• Queue is empty: f = r
• When r reaches and

overlaps with f, the queue is
full: r = f

• To distinguish between
empty and full states, we
impose a constraint: Q can
hold at most N – 1 objects
(one cell is wasted). So r
never overlaps with f,
except when the queue is
empty.

13

Pseudo-code

Algorithm enqueue(object):
if (size() == N – 1)
 throw QueueFullException;
Q[r] = object;
r = (r + 1) mod N;

Algorithm dequeue():
if (isEmpty())
 throw QueueEmptyException;
temp = Q[f];
f = (f + 1) mod N;
return temp;

14

Pseudo-code (2)

Algorithm front():
if (isEmpty())
 throw QueueEmptyException;
return Q[f];

Algorithm isEmpty():
 return (f = r);

Algorithm size():
 return ((N – f + r) mod N);

Homework: Remove the
constraint “Q can hold at
most N – 1 objects”. That is,
Q can store up to N objects.
Implement the Queue ADT
using a circular array.

Note: there is no

corresponding built-in Java
class for queue ADT

15

Analysis of Circular Array Implementation

Performance
• Each operation runs in O(1) time

Limitation
• The maximum size N of the queue is fixed
• How to determine N?
• Alternatives?

– Extendable arrays
– Linked lists (singly or doubly linked???)

16

Singly or Doubly Linked?

• Singly linked list

public static class Node
 {
 private Object data;
 private Node next;
 }

• Needs less space.
• Simpler code in some cases.
• Insertion at tail takes O(n).

• Doubly linked list

public static class DNode
 {
 private Object data;
 private Node prev;
 private Node next;
 }

• Better running time in many

cases (discussed before).

17

Implementing a Queue with a Singly Linked
List

• Head of the list = rear of the queue (enqueue)
• Tail of the list = front of the queue (dequeue)
• Is this efficient?

18

dequeue(): Removing at the Head

Running time = ?

19

enqueue(): Inserting at the Tail

Running time = ?

20

Method enqueue() in Java
public void enqueue(Object obj) {
 Node node = new Node();
 node.setElement(obj);
 node.setNext(null); // node will be new tail node
 if (size == 0)
 head = node; // special case of a previously empty queue
 else
 tail.setNext(node); // add node at the tail of the list
 tail = node; // update the reference to the tail node
 size++;
}

21

Method dequeue() in Java
public Object dequeue() throws QueueEmptyException {
 Object obj;
 if (size == 0)
 throw new QueueEmptyException("Queue is empty.");
 obj = head.getElement();
 head = head.getNext();
 size––;
 if (size == 0)
 tail = null; // the queue is now empty
 return obj;
}

22

Analysis of Implementation with Singly-Linked
Lists

• Each methods runs in O(1) time
• Note: Removing at the tail of a singly-linked list

requires O(n) time. Avoid this!

Comparison with array-based implementation:
• No upper bound on the size of the queue (subject to

memory availability)
• More space used per element (next pointer)
• Implementation is more complicated (pointer

manipulations)
• Method calls consume time (setNext, getNext, etc.)

Homework

• In the doubly linked list implementation, we use two
dummy nodes, header and trailer, to make coding
simple.

• Why don’t we use two dummy nodes in the singly
linked list implementation?

• Hint: Implement the queue operations using a singly
linked list with two dummy nodes header and trailer.

	Queues ��cse2011�section 5.2 of textbook
	Queues: FIFO
	Queue ADT
	Queue Operations
	Queue Example
	Array-based Implementation
	Array-based Implementation�Not Efficient
	Array-based Implementation
	Array-based Implementation
	Dequeue() and Enqueue()
	Circular Array Implementation
	Circular Array Implementation (2)
	Pseudo-code
	Pseudo-code (2)
	Analysis of Circular Array Implementation
	Singly or Doubly Linked?
	Implementing a Queue with a Singly Linked List
	dequeue(): Removing at the Head
	enqueue(): Inserting at the Tail
	Method enqueue() in Java
	Method dequeue() in Java
	Analysis of Implementation with Singly-Linked Lists
	Homework

