Queues

cse2011

section 5.2 of textbook

Queues: FIFO

Insertions and removals follow the Fist-In First-
Out rule:

— Insertions: at the rear of the queue
— Removals: at the front of the queue

Applications, examples:
— Waiting lists
— Access to shared resources (e.g., printer)

Queue ADT

Data stored: arbitrary objects
Operations:

— enqueue(object): inserts an element at the end of the
queue

— object dequeue(): removes and returns the element at
the front of the queue

— object front(): returns the element at the front without
removing it

Execution of dequeue() or front() on an empty queue
— throws EmptyQueueException
Another useful operation:

— boolean isEmpty(): returns true if the queue is empty;
false otherwise.

Queue Operations

enqueue(object)
object dequeue()
object front()
boolean isEmpty()

int size(): returns the
number of elements in the
gueue

Any others? Depending on
implementation and/or
applications

public interface Queue {
public int size();
public boolean isEmpty();
public Object front()

throws EmptyQueueException;
public Object dequeue()

throws

EmptyQueueException;

public void enqueue (Object
obj);
}

Operation
enqueue(b)
enqueue(3)
dequeue()
enqueue(7)
dequeue()
front()
dequeue()
dequeue()
ISEmpty()
enqueue(9)
enqueue(7)
size()
enqueue(3)
enqueue(b)
dequeue()

Queue Example

Output

NN QW IO

“error”

Q

()

(5. 3)
3)

3. 7)
(7)

(7)

0

0

0

(9)

9. 7)
9. 7)
9,7, 3)
(9,7,3,5)
(7, 3, 5)

Queues

Array-based Implementation

An array Q of maximum size N

We need to decide where the front and rear are.
How to enqueue, dequeue?

Running time of enqueue?

Running time of dequeue?

Array-based Implementation
Not Efficient

* Frontis fixed as the first element.

 We only keep one index, t, to keep track of the rear.
e enqueue is O(?).

e dequeue is O(?).

t
0 (I T IITIITIT]
01 2
b 4 r

Array-based Implementation

 An array Q of maximum size N

 Need to keep track the front and rear of the
gueue:

f: index of the front object
r: index immediately past the rear element
 Note: Q[r] is empty (does not store any object)

0 (T T TTTTTITTT]
012 f r

Array-based Implementation

Front element: Q|[f]
Rear element: Q[r — 1]
Queue is empty: f=r
Queue size: r—f

How to dequeue?

How to enqueue?

Dequeue() and Enqueue()

Algorithm dequeue():
if (isEmpty())
throw QueueEmptyException;
temp = Q|[f];
f=r+1;

return temp;

Algorithm enqueue(object):
if (r==N)

throw QueueFullException;
Q|r] = object;
r=r+1;

0 (T IIIIIIT]
012 f F

It is assumed that f £ r. What is the problem?

10

Circular Array Implementation

0 (I TITTITTTTTTT]

012 r f
 Analogy: Incrementingf, r
A snake chases its tail f=(f+1)modN
r=(r+1)modN
* Front element: Q[f] mod: Java operator “%”

Rear element: Q[r — 1] _ _
It is the remainder after an

integral division.

f <ris not a valid assumption anymore. "

Circular Array Implementation (2)

0 (I TITTITTTTTTT]

012 r

/

Queue size =
(N—f+r)modN

—> verify this

Queue is empty: f=r
When r reaches and

overlaps with f, the queue is
full: r=f

e To distinguish between
empty and full states, we
impose a constraint: Q can
hold at most N — 1 objects
(one cell is wasted). So r
never overlaps with f,
except when the queue is
empty.

12

Pseudo-code

Algorithm enqueue(object):
if (size() == N —1)

throw QueueFullException;
Q[r] = object;
r=(r+1) modN;

Algorithm dequeue():
if (isEmpty())

throw QueueEmptyException;

temp = Qlf];
f=(f+1) modN;
return temp;

13

Pseudo-code (2)

Algorithm front():
if (isEmpty())
throw QueueEmptyException;

return Q[f];

Algorithm isEmpty():
return (f = r);

Algorithm size():
return ((N —f+ r) mod N);

Homework: Remove the

constraint “Q can hold at

most N — 1 objects”. That is,
Q can store up to N objects.

Implement the Queue ADT
using a circular array.

Note: there is no
corresponding built-in Java
class for queue ADT

14

Analysis of Circular Array Implementation

Performance
* Each operation runs in O(1) time

Limitation

e The maximum size N of the queue is fixed
e How to determine N?

e Alternatives?

— Extendable arrays
— Linked lists (singly or doubly linked??7?)

15

Singly or Doubly Linked?

e Singly linked list

public static class Node

{

private Object data;
private Node next;

Needs less space.

Simpler code in some cases.

Insertion at tail takes O(n).

 Doubly linked list

public static class DNode

{
private Object data;

private Node prev;
private Node next;

 Better running time in many
cases (discussed before).

16

Implementing a Queue with a Singly Linked
List

__

 Head of the list = rear of the queue (enqueue)
e Tail of the list = front of the queue (dequeue)
e |s this efficient?

17

dequeue(): Removing at the Head

head

N

tail

— . . J [. l————.-£E§

\

\

(:E-altimnre) (Rome) (Seaﬂ‘le j (:anu:untclj

» advance head reference

T =
al) \ \
/)

I o e = Hissnaihl ks mna i - (]

head tail

)_:i (Rome) (Seaﬂle) [annntDJ

]

1[5 1:
alirmare

IRH

-

» inserting at the head is just as easy

Running time = ?

18

enqueue(): Inserting at the Tail

.« create a new node

head tall

\ ’#Hq—ﬁ“ﬁ
————— :
- "'. -——r- = (7 : . :_-Jl—}l-@ g

* |
I b "-
| h
\ ﬁ
§
(Ru:ume) (Seatﬂe Tu:urn:untn:u Eunn:h I
,l

* chain it and move the tail reference

head tail

N \

I s h-qn-——h@

Running time = ?

(Bome) (Seatle) (Tormto) [Zurich)

* how about removing at the tail?
: 19

Method enqueue() in Java

public void enqueue(Object obj) {

Node node = new Node();
node.setElement(obj);
node.setNext(null); // node will be new tail node

if (size == 0)

head = node; // special case of a previously empty queue
else

tail.setNext(node); // add node at the tail of the list
tail = node; // update the reference to the tail node

Size++;

20

Method dequeue() in Java

public Object dequeue() throws QueueEmptyException {
Object obj;
if (size ==0)
throw new QueueEmptyException("Queue is empty.");
obj = head.getElement();
head = head.getNext();
Size—;
if (size == 0)
tail = null; //the queue is now empty
return obj;

21

Analysis of Implementation with Singly-Linked
Lists

e Each methods runsin O(1) time

 Note: Removing at the tail of a singly-linked list
requires O(n) time. Avoid this!

Comparison with array-based implementation:

 No upper bound on the size of the queue (subject to
memory availability)

e More space used per element (next pointer)

 |Implementation is more complicated (pointer
manipulations)

e Method calls consume time (setNext, getNext, etc.)

22

Homework

* |n the doubly linked list implementation, we use two
dummy nodes, header and trailer, to make coding

simple.
e Why don’t we use two dummy nodes in the singly
linked list implementation?

e Hint: Implement the queue operations using a singly
linked list with two dummy nodes header and trailer.

	Queues ��cse2011�section 5.2 of textbook
	Queues: FIFO
	Queue ADT
	Queue Operations
	Queue Example
	Array-based Implementation
	Array-based Implementation�Not Efficient
	Array-based Implementation
	Array-based Implementation
	Dequeue() and Enqueue()
	Circular Array Implementation
	Circular Array Implementation (2)
	Pseudo-code
	Pseudo-code (2)
	Analysis of Circular Array Implementation
	Singly or Doubly Linked?
	Implementing a Queue with a Singly Linked List
	dequeue(): Removing at the Head
	enqueue(): Inserting at the Tail
	Method enqueue() in Java
	Method dequeue() in Java
	Analysis of Implementation with Singly-Linked Lists
	Homework

