Double-Ended Queues

cse2011 section 5.3 of textbook

1

Double-Ended Queue ADT

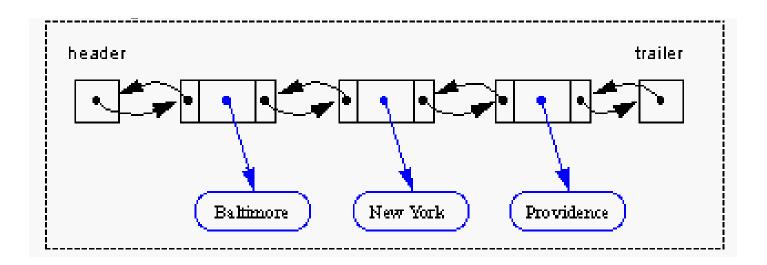
- **Deque** (pronounced "deck")
- Allows insertion and deletion at <u>both</u> the **front** and the **rear** of the queue
- Deque ADT: operations addFirst(e): insert e at the beginning of the deque addLast(e): insert e at the end of the deque remove and return the first element removeFirst(): *removeLast():* remove and return the last element *getFirst()*: return the first element getLast(): return the last element *isEmpty()*: return true if deque is empty; false otherwise size(): return the number of objects in the deque

Implementation Choices

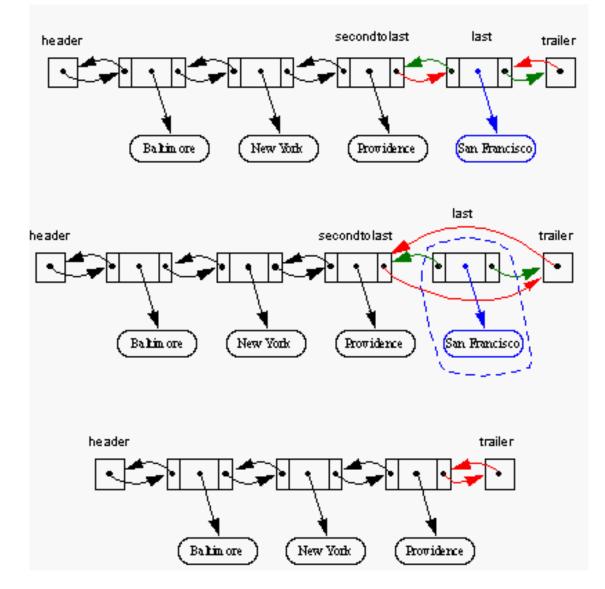
• Arrays

Similar to queue implementation (<u>homework</u>)

- Linked lists: singly or doubly linked?
 - Removing at the tail costs **O(n)** for singly lined list



removeLast() and addLast()



Implementing Stacks and Queues with Deques

Stack Method	Deque Implementation
size()	size()
isEmpty()	isEmpty()
top()	last()
push(e)	insertLast(e)
popO	removeLast()

Queue Method	Deque Implementation
size()	size()
isEmpty()	isEmpty()
front()	first()
enqueue()	insertLast(e)
dequeue()	removeFirst()

The Adapter Pattern

 Using methods of one class to implement methods of another class

• Example: using Deque to implement Stack and Queue

Extendable Arrays

CSE 2011

Extendable Array Implementation

When push()/insert() is called and an overflow occurs (n = N):

- Allocate a new array **T** of capacity **2N**
- Copy contents of the original array V into the <u>first half</u> of the new array T
- Set **V** = **T**
- Perform the insertion using new array V
- Note: when the number of elements in the list goes below a threshold (e.g., N/4), <u>shrink</u> the array by half the current size N of the array.
 - not to waste the memory.

Time Analysis

- *"push"*: inserting an element to be the last element of a list (or top of a stack)
- add(e) {

```
if (full stack) then extend the array;
```

```
"push" e to new array;
```

```
}
```

• Proposition 1:

Let **S** be a list implemented by means of an extendable array **V** as described before. The total time to perform a series of **n** "push" operations in **S**, <u>starting</u> from **S** being empty and **V** having size N = 1, is O(n).

Pseudo-code

```
int [] V = new int[1]; N = 1; top = -1;
input element e;
for( i = 0; i < n; i++ ) {
 if( stack is full ) {
   allocate a new array T of capacity 2N;
   copy V[i] to T[i] for i = 0, 1, ..., N–1; // a for loop
   set V = T;
   N = N * 2;
  }
 top = top + 1;
 V[top] = e;
 input next element e;
}
```

Time Analysis

- 1. All array extensions: O(?)
- Allocate a new array T of capacity 2N
- Copy **V**[i] to **T**[i] for i = 0, 1, ..., N–1
- Set **V** = **T**
- 2. <u>All</u> "push" operations take O(n) (each "push" takes O(1))

Running time of <u>all</u> array extensions:

- If the array is extended k times, then $n = 2^k$
- The total number of copies is:
 1 + 2 + 4 + 8 + ... + 2^{k−1} = 2^k − 1 = n − 1 = O(n)

Total = O(n) + O(n) = O(n)

Increment Strategies

- java.util.ArrayList and java.util.Vector use extendable arrays.
- capacityIncrement determines how the array grows.
- There exist two approaches.
 - *capacityIncrement =* 0:
 - capacityIncrement = c > 0:

array size doubles

array adds *c* new cells

Proposition 2:

If we create an initially empty java.util.Vector object with a fixed positive *capacityIncrement* value, then performing a series of **n** push operations on this vector takes $\Omega(n^2)$ time.

• $\Omega(n^2)$: takes at least time n^2

Increment Strategies (2)

- 1. Array extensions: O(?)
- Let *a* be the initial size of array *V*
- Let capacityIncrement = c
- If the array is extended k times then <u>n = a + ck</u>
- The total number of copies is:
 (a) + (a+c) + (a+2c) + ... + (a+(k-1)c) =
 ak + c(1+2+...+(k-1)) = ak + ck(k-1)/2 = θ(k²) = θ(n²)
- We infer $\Omega(n^2)$ from $\theta(n^2)$
- <u>All</u> "push" operations take O(n) (each "push" takes O(1))

Next lecture ...

• Trees (chapter 7)