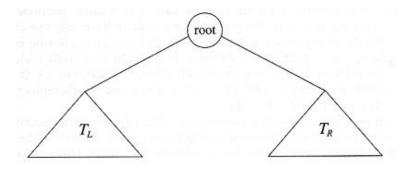
Binary Trees Section 7.3 CSE 2011

Binary Trees

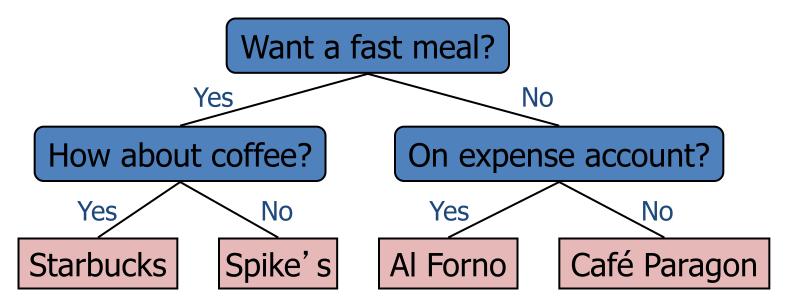
• A tree in which each node can have at most two children.



The depth of an "average" binary tree is considerably smaller than N In the worst case, the depth can be as large as N – 1.

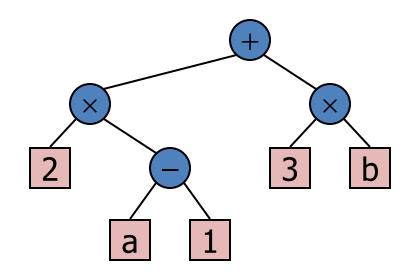
Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision



Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times (a 1) + (3 \times b))$



Tree ADT (review)

- We use positions to abstract nodes (position = node)
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - Iterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

- Query methods:
 - boolean isInternal(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update method:
 - object replace (p, e): replace with e and return element stored at node p
- Additional update methods may be defined by data structures implementing the Tree ADT

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - position left(p)
 - position right(p)
 - boolean hasLeft(p)
 - boolean hasRight(p)

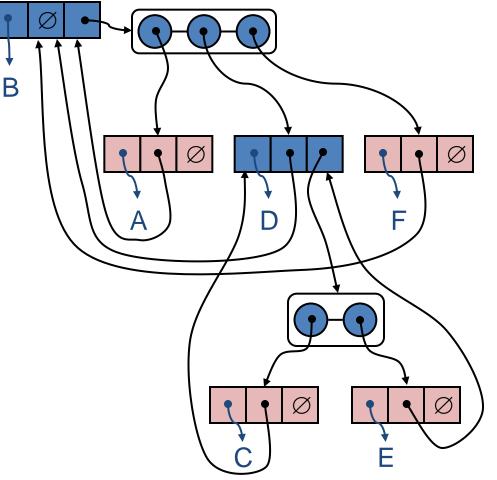
 Update methods may be defined by data structures implementing the BinaryTree ADT

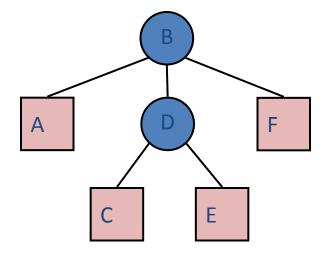
Implementing Binary Trees

- Arrays?
 - Discussed later
- Linked structure?

Linked Structure for Trees (review)

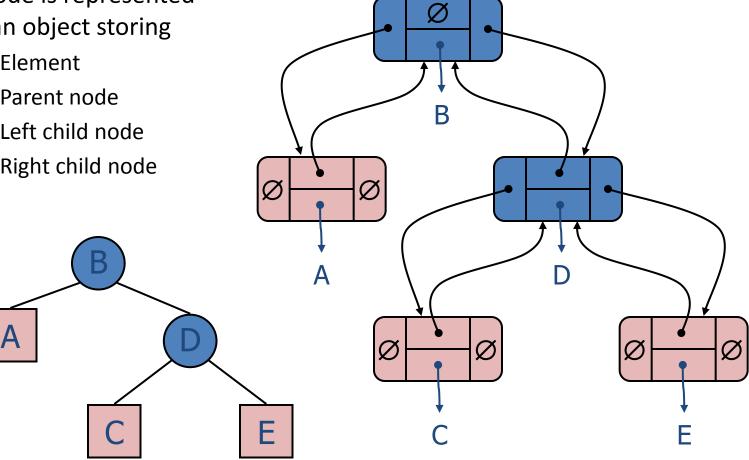
- A node is represented by an object storing
 - Element
 - Parent node
 - Sequence of children nodes





Linked Structure of Binary Trees (2)

- A node is represented ٠ by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node



Linked Structure of Binary Trees

class BinaryNode { Object element BinaryNode left; BinaryNode right; BinaryNode parent;

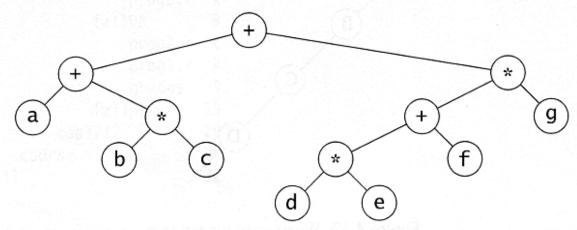


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Binary Tree Traversal

- Preorder (node, left, right)
- Postorder (left, right, node)
- Inorder (left, node, right)

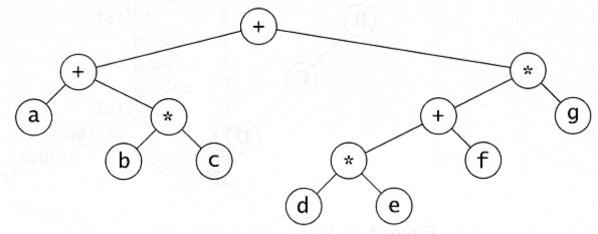


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Preorder Traversal: Example

- Preorder traversal
 - node, left, right
 - prefix expression
 - ++a*bc*+*defg

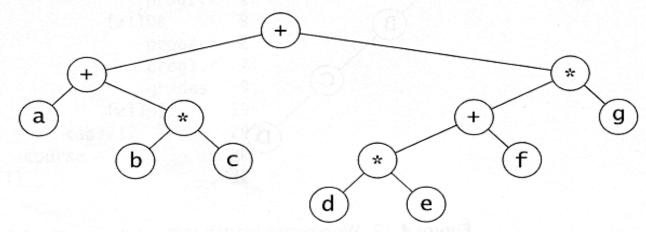


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Postorder Traversal: Example

- Postorder traversal
 - left, right, node
 - postfix expression
 - a b c * + d e * f + g * +

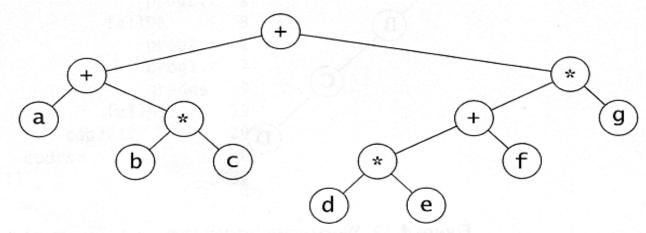


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Inorder Traversal: Example

- Inorder traversal
 - left, node, right
 - infix expression
 - a + b * c + d * e + f * g

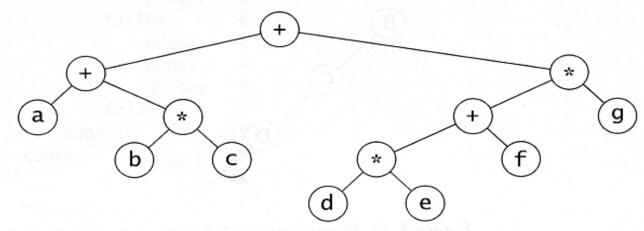


Figure 4.14 Expression tree for (a + b * c) + ((d * e + f) * g)

Pseudo-code for Binary Tree Traversal

Algorithm Preorder(x)
Input: x is the root of a subtree.
1. if $x \neq \text{NULL}$
 then output key(x);
 Preorder(left(x));
 Preorder(right(x));

Algorithm Inorder(x)

Input: x is the root of a subtree.

- 1. if $x \neq$ NULL
- then Inorder(left(x));
- output key(x);
- Inorder(right(x));

Algorithm Postorder(x)Input: x is the root of a subtree.1. if $x \neq$ NULL2. then Postorder(left(x));3. Postorder(right(x));4. output key(x);

Properties of Proper Binary Trees

- A binary trees is <u>proper</u> if each node has either zero or two children.
- Level: depth
 The root is at level 0
 Level d has at most 2^d nodes
- Notation:
 - *n* number of nodes
 - *e* number of external (leaf) nodes
 - *i* number of internal nodes
 - h height

$$n = e + i$$
$$e = i + 1$$
$$h + 1 \le e \le 2^{h}$$

n = 2e - 1 $h \leq i \leq 2^{h} - 1$ $2h+1 \leq n \leq 2^{h+1} - 1$

 $\log_2 e \le h \le e - 1$ $\log_2 (i+1) \le h \le i$ $\log_2 (n+1) - 1 \le h \le (n-1)/2$

Properties of (General) Binary Trees

- Level: depth The root is at level 0 Level d has at most 2^d nodes
- Notation: •
 - *n* number of nodes
 - *e* number of external (leaf) nodes
 - *i* number of internal nodes
 - **h** height

$$h+1 \le n \le 2^{h+1}-1$$

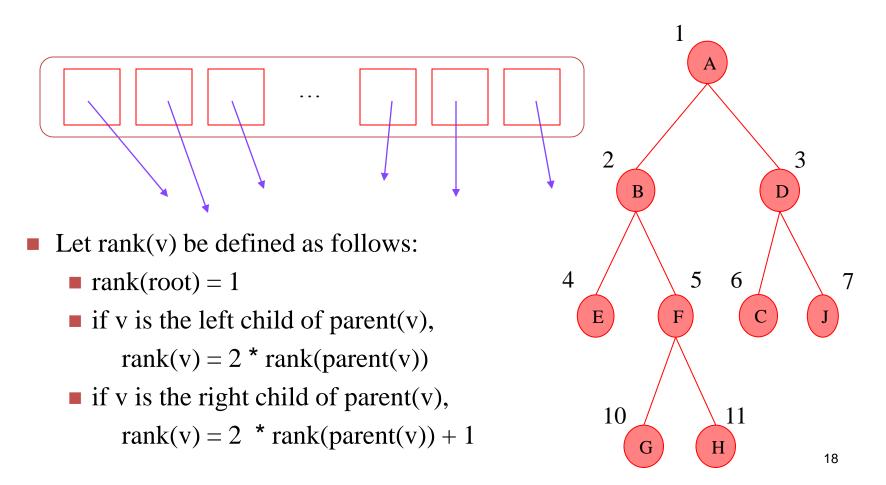
$$1 \leq e \leq 2^h$$

$$h \leq i \leq 2^h - 1$$

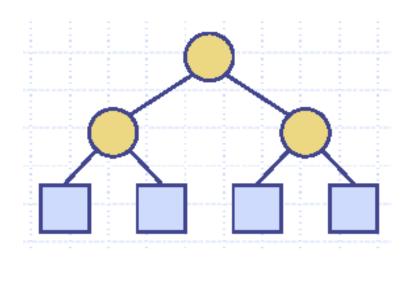
$$\log_2(n+1) - 1 \le h \le n - 1$$

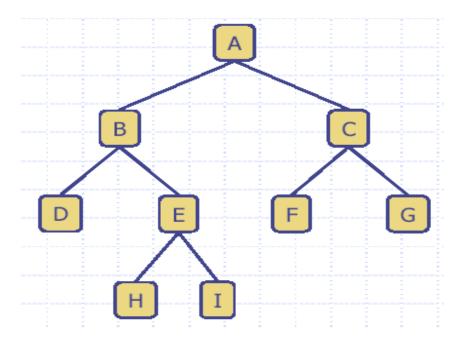
Array-Based Implementation

• Nodes are stored in an array.



Array Implementation of Binary Trees





Each node v is stored at index i defined as follows:

- If v is the root, i = 1
- The left child of v is in position 2i
- The right child of v is in position 2i + 1
- The parent of *v* is in position ???

Space Analysis of Array Implementation

- *n*: number of nodes of binary tree *T*
- *p_M*: index of the rightmost leaf of the corresponding *full* binary tree (or size of the full tree)
- *N*: size of the array needed for storing *T*; $N = p_M + 1$ Best-case scenario: balanced, full binary tree $p_M = n$ Worst case scenario: unbalanced tree
- Height h = n 1
- Size of the corresponding full tree:

$$p_M = 2^{h+1} - 1 = 2^n - 1$$

• $N = 2^n$

Space usage: $O(2^n)$

Arrays versus Linked Structure

Linked structure

- Slower operations due to pointer manipulations
- Use less space if the tree is unbalanced
- AVL trees: rotation (restructuring) code is simple

Arrays

- Faster operations
- Use less space if the tree is balanced (no pointers)
- AVL trees: rotation (restructuring) code is complex

Next lecture ...

- Binary Search Trees (10.1)
- AVL Trees (10.2)