Binary Trees

Section 7.3
CSE 2011

Binary Trees

e Atreein which each node can
have at most two children.

Generic
binary tree

 The depth of an “average” binary
tree is considerably smaller than N

In the worst case, the depth can

be as large as N — 1. Worst-case
binary tree

Decision Tree

* Binary tree associated with a decision process
— internal nodes: questions with yes/no answer
— external nodes: decisions

 Example: dining decision

Starbucks | |Spike’s| [Al Forno Café Paragon

Arithmetic Expression Tree

* Binary tree associated with an arithmetic
expression

— internal nodes: operators
— external nodes: operands

 Example: arithmetic expression tree for the
expression (2 x (a—1) + (3 x b))

Tree ADT (review)

We use positions to abstract O Query methods:
nodes (position = node) = boolean isInternal(p)
Generic methods: = boolean isExternal(p)
— integer size() = boolean isRoot(p)
— boolean isEmpty() o Update method:
— Iterator elements() = Object replace (p, e): replace
— positionlterator positions() with e and return element

stored at node p

o Additional update methods
may be defined by data
structures implementing the
Tree ADT

Accessor methods:

— position root()

— position parent(p)

— positionlterator children(p)

BinaryTree ADT

 The BinaryTree ADT

extends the Tree ADT,

i.e., it inherits all the
methods of the Tree
ADT

 Additional methods:

— position left(p)

— position right(p)

— boolean haslLeft(p)
— boolean hasRight(p)

Trees

Update methods may
be defined by data
structures
implementing the
BinaryTree ADT

Implementing Binary Trees

* Arrays?

— Discussed later

e Linked structure?

Linked Structure for Trees (review)

* A nodeis represented by an
object storing
— Element
— Parent node

— Sequence of children
nodes

Trees 8

* A nodeis represented

Linked Structure of Binary Trees (2)

by an object storing
— Element
— Parent node
— Left child node
— Right child node

Linked Structure of Binary Trees

class BinaryNode {
Object element
BinaryNode left;
BinaryNode right;
BinaryNode parent;

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d *e + f) * @)

10

Binary Tree Traversal

Preorder (node, left, right)
Postorder (left, right, node)

norder (left, node, right)

Figure 4.14 Expressiontreefor (@ + b * ¢) + ((d *e + f) * @)

11

Preorder Traversal: Example

 Preorder traversal
— node, left, right
— prefix expression
* ++a*bc*+*defg

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + £) * @)

12

Postorder Traversal: Example

 Postorder traversal
— left, right, node
— postfix expression
* abc*+de*f+g*+

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + £) * @)

13

Inorder Traversal: Example

* |[norder traversal
— left, node, right
— infix expression
e a+tb*c+d*e+f*g

Figure 4.14 Expressiontreefor (a + b * ¢) + ((d * e + £) * @)

14

Pseudo-code for Binary Tree Traversal

Algorithm FPreorder(z) Algorithm Inorder(x)

Input: = is the root of a subtree. Input: = is the root of a subtree.
1. ifx NULL 1. ifxz7 NULL

2 then output key(x); 2 then Inorder(left{z));

3. Preorder(left(z)); 3. output key(z);

4 FPreorder(right{z)); 4 Inorder(right(z));

Algorithm Postorder(x)

Input: = is the root of a subtree.
1. if =% NULL

2. then Postorder(left(z));
3. Postorder(right(x));
4. output key(x);

15

Properties of Proper Binary Trees

A binary trees is proper if each
node has either zero or two
children.

Level: depth

The root is at level O
Level d has at most 29 nodes

Notation:
N number of nodes

e number of external (leaf)
nodes

| number of internal nodes
h height

nN=e+1I
e=1+1
h+]1 <e<2h
n=2e-1

h <ig2h—1
2h+1< n <211

log,e< h<e-1
log, (I+1)< h < |

log, (n+1)-1< h<(n-1)/2

16

Properties of (General) Binary Trees

* Level: depth h+1< n <2"l_1
The root is at level O
Level d has at most29nodes 1< e <2

* Notation:
N number of nodes h <i<g2h-1
e number of external (leaf)
nodes log,(N+1)—1< h<n-1

number of internal nodes
height

17

Array-Based Implementation

* Nodes are stored in an array.

N N R
\\ \\ j
= Let rank(v) be defined as follows:
= rank(root) =1
m if v is the left child of parent(v),
rank(v) = 2 * rank(parent(v))

= if v is the right child of parent(v),
rank(v) =2 * rank(parent(v)) + 1

AN

N\

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:
e |fvistheroot,i=1

* The left child of vis in position 2i

* The right child of vis in position 2i+1

* The parent of vis in position ???

19

Space Analysis of Array Implementation

* n:number of nodes of binary tree T

* p,: index of the rightmost leaf of the corresponding
full binary tree (or size of the full tree)

* N:size of the array needed for storing T; N=p,,+ 1

Best-case scenario: balanced, full binary tree p,, = n

Worst case scenario: unbalanced tree

e Heighth=n-1

* Size of the corresponding full tree:
p,,=2Mt—-1=2"-1

e N=2N

Space usage: O(2")

20

Arrays versus Linked Structure

Linked structure Arrays

* Slower operations * Faster operations
due to pointer

manipulations * Use less space if the

* Use less space if the tree is balanced (no
tree is unbalanced pointers)

* AVL trees: rotation e AVL trees: rotation
(restructuring) code (restructuring) code

is simple is complex

21

Next lecture ...

e Binary Search Trees (10.1)
 AVL Trees (10.2)

22

