Binary Search Trees

cse2011

section 10.1 of textbook



Dictionary ADT (section 9.5.1)

The dictionary ADT models a
searchable collection of key-
element items

The main operations of a
dictionary are searching,
Inserting, and deleting items

Multiple items with the same
key are allowed

Applications:

— address book

— credit card authorization
— SIN database

— student database

Dictionary ADT methods:

get(k): if the dictionary has an
item with key k, returns its
element, else, returns NULL

getAll(k): returns an iterator of
entries with key k

put(k, 0): inserts item (k, 0)
Into the dictionary, which k is
the key and o is the object

remove(k): if the dictionary
has an item with key K,
removes it from the dictionary
and returns its element, else
returns NULL

removeAll(k): remove all
entries with key k; return an
iterator of these entries.

size(), isEmpty()



Binary Search Trees

« A binary search tree is a * Aninorder traversal of a
binary tree storing keys (or binary search trees visits the
key-element pairs) at its keys in increasing order
Internal nodes and satisfying e The left-most child has the
the following property: smallest key

* The right-most child has the
Let u, v, and w be three largest key

nodes such that u is in the
left subtree of vand w is in
the right subtree of v. We
have

key(u) < key(v) < key(w)

 External nodes (dummies)
do not store items (non-
empty proper binary trees,
for coding simplicity)




Example of BST

A binary search tree Not a binary search tree



More Examples of BST

The same set of keys may have different BSTs.
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* Average depth of a node is O(logN).
e Maximum depth of a node is O(N).
 Where is the smallest key? largest key?



Inorder Traversal of BST

* Inorder traversal of BST prints out all the keys in

sorted order. —
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Inorder: 2, 3,4,6, 7,9, 13, 15, 17, 18, 20



Searching BST

If we are searching for 15, then we are done.
If we are searching for a key < 15, then we should
search in the left subtree.

If we are searching for a key > 15, then we should
search in the right subtree.
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Example: Search for 9 ...

Search for 9:

mok W

compare 9:15(the root), go to left subtree;
compare 9:6, go to right subtree;

compare 9:7, go to right subtree;

compare 9:13, go to left subtree;

compare 9:9, found it!



Search Algorithm

To search for a key Kk,
we trace a downward
path starting at the root

The next node visited
depends on the
outcome of the
comparison of k with the
key of the current node

If we reach a leaf, the
key is not found and
we return v (where the
key should be if it will be
Inserted)

Example:
TreeSearch(4, T.root())

Running time: ?

Algorithm TreeSearch(k, v)
if T.isExternal (v)
return (v);
If k < key(v)

return TreeSearch( k, T.left(v) )

else if k = key(v)
return v
else /I{ k > key(v) }

return TreeSearch( k, T.right(v) )

/[ or return NO SUCH_KEY




Insertion (distinct keys)

To perform operation
Insertitem(k, 0), we search
for key k

Assume k is not already in

the tree, and let w be the
leaf reached by the search

We insert k at node w and
expand w into an internal
node using
insertAtExternal(w, (k,e))

Example:

insertAtExternal(w, (5,e))
with e having key 5

Running time: ?




Insertion Algorithm (distinct keys)

Algorithm Treelnsert( k, e, v ) {
w = TreeSearch( k, v );
T.insertAtExternal( w, k, e );
return wi;

}
Algorithm insertAtExternal( w, k, e ) {

If ( T.isExternal( w) {
make w an internal node, store k and e into w;
add two dummy nodes (leaves) as w’ s children;
} else { error condition };

}

o First call: Treelnsert( 5, e, T.root() )
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Insertion (duplicate keys)

Insertion with duplicate keys
« Example: insert(2)
o Call TreeSearch(k,

leftChild(w)) to find the leaf
node for insertion

« Can insert to either the left
subtree or the right subtree
(call TreeSearch(k,
rightChild(w))

Running time: ?

Homework: implement method
getAll(k)
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Insertion Algorithm (duplicate keys)

Algorithm Treelnsert( k, e, v) {
w = TreeSearch( k, v );
If kK == key(w) // key exists
return Treelnsert( k, e, T.left((w)); /] ***
T.insertAtExternal( w, k, e );
return w;

}

e First call: Treelnsert( 2, e, T.root() )

***Note: If inserting the duplicate key into the left subtree,
keep searching the left subtree after a key has been

found.
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Deletion

To perform operation removeElement(k), we
search for key k

Assume key k Is In the tree, and let v be the
node storing k

Three cases:

— Case 1: v has no children

— Case 2: v has exactly one child
— Case 3: v has two children




Deletion: Case 1

Case 1:v has no
children

We simply remove v

and its 2 dummy
leaves.

Replace v by a dummy
node.

Example: remove 5
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Deletion: Case 2

Case 1: v has exactly
one child

v’s parent will “adopt”

v’s child.

We connect v’s parent
to v’s child, effectively
removing v and the
dummy node w from the
tree.

Done by method

removekExternal(w)
Example: remove 4
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Method removeExternal( )

* Remove an external node v and its parent:
— Replacing v’s parent with v’s sibling
— An error occurs If v Is not external
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Deletion: Case 3

e Case 3:v has two children (and possibly grandchildren,
great-grandchildren, etc.)

 Identify v's “heir”: either one of the following two nodes:
— the node x that immediately precedes v in an inorder

traversal (right-most node in v’ s left subtree)

— the node x that immediately follows v in an inorder
traversal (left-most node in v’ s right subtree)

e Two steps:
— copy content of x into node v (heir “inherits” node V);

— remove x from the tree (use either case 1 or case 2
above).




Deletion: Case 3 Example

Example: remove 3
Heir = ?

Running time of deletion
algorithm: ?

Homework: implement
removeAll(k) 3




Notes

e Two steps of case 3.
— copy content of x into node v (heir “inherits” node Vv);
— remove x from the tree
e if x has no child: call case 1
e if x has one child: call case 2
e X cannot have two children (why?/Homework)

 Both cases 1 and 2 can be merged into one and
Implemented by method removeExternal ().
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Performance

« Consider a dictionary Worst Case
with n items
Implemented by means
of a binary search tree
of height h

— the space used is O(n)

— methods get(k) , put()
and remove(k) take O(h)
time

 The height his O(n) In
the worst case and
O(log n) in the best
case

Best Case
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