
AVL Trees

 cse2011
section 10.2 of textbook

1

2

AVL Trees
• AVL trees are

balanced.

• An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can differ
by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
heights are shown next to the nodes

3

Height of an AVL Tree
• Proposition: The height of an AVL tree T storing n

keys is O(log n).

Proof:
• Find n(h): the minimum number of internal nodes of

an AVL tree of height h
• We see that n(1) = 1 and n(2) = 2
• For h ≥ 3, an AVL tree of height h contains the root

node, one AVL subtree of height h−1 and the other
AVL subtree of height h−2.

• i.e. n(h) = 1 + n(h−1) + n(h−2)

4

Height of an AVL Tree (2)

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2)
n(h) > 2n(h-2)
n(h) > 4n(h-4)
…
n(h) > 2in(h-2i)

• Solving the base case we get: n(h) ≥ 2 h/2-1

• Taking logarithms: h < 2log n(h) +2

• Thus the height of an AVL tree is O(log n)

5

Insertion in an AVL Tree
• Insertion is as in a binary search tree.
• Always done by expanding an external node.
• Example: 44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion

6

Insertion: rebalancing

• A binary search tree T is called balanced if for every node

v, the height of v’s children differ by at most 1.

• Inserting a node into an AVL tree involves performing

insertAtExternal(w, e) on T, which changes the heights of

some of the nodes in T.

7

Insertion: rebalancing
• If an insertion causes T to become unbalanced, we travel

up the tree from the newly created node w until we find the

first node z that is unbalanced.

• y = child of z with higher height (Note: y = ancestor of w)

• x = child of y with higher height

 (Note: x = ancestor of w or x = w)

• Since z became unbalanced by an insertion in the subtree

rooted at its child y, height(y) = height(sibling(y)) + 2

Insertion: restructuring
• Now to rebalance...

• To rebalance the subtree rooted at z, we must

perform a restructuring.

8

9

Tri-node Restructuring

• We rename x, y, and z to a, b, and c based on the order

of the nodes in an in-order traversal (see the next

slides for 4 possible mappings).

• z is replaced by b, whose children are now a and c

whose children, in turn, consist of the 4 other subtrees

formerly children of x, y, and z.

10

Tri-node Restructuring (2)
 Single rotations

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

T0 T1 T2
T3

11

Tri-node Restructuring (3)
 Double rotations

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

12

Single/Double Rotations
• let (a,b,c) be an inorder listing of x, y, z
• perform the rotations needed to make b the topmost node of the

three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=y a=z

T0 T1 T2 T3
case 1: single rotation
(a left rotation about a)

case 2: double rotation
(a right rotation about c,
then a left rotation about a)

(other two cases
are symmetrical)

13

Restructuring Example

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z
2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced

1
2

3

4

5

6

7

14

Restructure Algorithm
Algorithm restructure(x):

 Input: A node x of a binary search tree T that has both a parent y

and a grandparent z
 Output: Tree T restructured by a rotation (either
 single or double) involving nodes x, y, and z.

1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T0,

T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and
z, not rooted at x, y, or z.

2. Replace the subtree rooted at z with a new subtree rooted at b
3. Let a be the left child of b and let T0, T1 be the left and right

subtrees of a, respectively.
4. Let c be the right child of b and let T2, T3 be the left and right

subtrees of c, respectively.

15

Removal
• First remove the node as in a BST.
• Performing a removeExternal(w) can cause T to

become unbalanced.
• Let z be the first unbalanced node encountered while

travelling up the tree from w.
• y = child of z with higher height (y ≠ ancestor of w)
• x = child of y with higher height, or either child if two

children of y have the same height.
• Perform operation restructure(x) to restore balance at

the subtree rooted at z.
• As this restructuring may upset the balance of another

node higher in the tree, we must continue checking for
balance until the root of T is reached.

16

Removal Example

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1

T2

T3

y

x

0

Oh no, unbalanced!

8817

78

50

48

62

1

1

2

23

1

54
1

T0

T2

T3

y

x
44

4

z

0 Whew, balanced!

Choose either 78
or 50 as node x.

17

Removal Example (2)

Whew, balanced!

88

17 78

50

48

62
1 1

4

2

3

1
54

1

T0 T1 T2

y

x

0

44
2

z

88

44

17

78

32

50

48

62
1

4

1

2 2

3

1
54

1
T0

T1 T2 T3

z

y

x

0

Oh no, unbalanced!

Choose 50 as x.

Next lecture …

• Heaps (8.3)
• Midterm

• Midterm will be held on Wednesday June

26th in CLH F. On June 26th, we will have
a lecture from 7:00pm to 8:15pm and then
the exam will be from 8:30pm to 10:00pm.
Please note that the lecture and the exam
will be held in CLH F on June 26th.

18

	AVL Trees�� cse2011�section 10.2 of textbook
	AVL Trees
	Height of an AVL Tree
	Height of an AVL Tree (2)
	Insertion in an AVL Tree
	Insertion: rebalancing
	Insertion: rebalancing
	Insertion: restructuring
	Tri-node Restructuring
	Tri-node Restructuring (2)
	Tri-node Restructuring (3)
	Single/Double Rotations
	Restructuring Example
	Restructure Algorithm
	Removal
	Removal Example
	Slide Number 17
	Next lecture …

