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AVL Trees 
• AVL trees are 

balanced. 
 

• An AVL Tree is a 
binary search tree 
such that for every 
internal node v of T, 
the heights of the 
children of v can differ 
by at most 1. 
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Height of an AVL Tree 
• Proposition: The height of an AVL tree T storing n 

keys is O(log n). 
 

Proof:  
• Find n(h): the minimum number of internal nodes of 

an AVL tree of height h 
• We see that n(1) = 1 and n(2) = 2 
• For h ≥ 3, an AVL tree of height h contains the root 

node, one AVL subtree of height h−1 and the other 
AVL subtree of height h−2. 

• i.e. n(h) = 1 + n(h−1) + n(h−2) 
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Height of an AVL Tree (2) 

• Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2) 
n(h) > 2n(h-2) 
n(h) > 4n(h-4) 
… 
n(h) > 2in(h-2i) 

 
• Solving the base case we get: n(h) ≥ 2 h/2-1 

 
• Taking logarithms: h < 2log n(h) +2 

 
• Thus the height of an AVL tree is O(log n) 
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Insertion in an AVL Tree 
• Insertion is as in a binary search tree. 
• Always done by expanding an external node. 
• Example: 44 

17 78 

32 50 88 

48 62 

54 
w 

b=x 

a=y 

c=z 

44 

17 78 

32 50 88 

48 62 

before insertion after insertion 
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Insertion: rebalancing 

• A binary search tree T is called balanced if for every node 

v, the height of v’s children differ by at most 1. 

 

• Inserting a node into an AVL tree involves performing 

insertAtExternal(w, e) on T, which changes the heights of 

some of the nodes in T. 
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Insertion: rebalancing 
• If an insertion causes T to become unbalanced, we travel 

up the tree from the newly created node w until we find the 

first node z that is unbalanced. 

• y = child of z with higher height (Note: y = ancestor of w) 

• x = child of y with higher height  

 (Note: x = ancestor of w or x = w) 

• Since z became unbalanced by an insertion in the subtree 

rooted at its child y, height(y) = height(sibling(y)) + 2  



Insertion: restructuring 
• Now to rebalance... 
 
• To rebalance the subtree rooted at z, we must 

perform a restructuring. 
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Tri-node Restructuring 

• We rename x, y, and z to a, b, and c based on the order 

of the nodes in an in-order traversal (see the next 

slides for 4 possible mappings). 

 

• z is replaced by b, whose children are now a and c 

whose children, in turn, consist of the 4 other subtrees 

formerly children of x, y, and z. 
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Tri-node Restructuring (2) 
 Single rotations 
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Tri-node Restructuring (3) 
 Double rotations 

double rotationa =  z

b =  x
c =  y
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Single/Double Rotations 
• let (a,b,c) be an inorder listing of x, y, z 
• perform the rotations needed to make b the topmost node of the 

three 

b=y 

a=z 

c=x 
T0 

T1 

T2 T3 

b=y 

a=z c=x 

T0 T1 T2 T3 

c=y 

b=x 

a=z 

T0 

T1 T2 

T3 b=x 

c=y a=z 

T0 T1 T2 T3 
case 1: single rotation 
(a left rotation about a) 

case 2: double rotation 
(a right rotation about c, 
then a left rotation about a) 

(other two cases 
are symmetrical) 



13 

Restructuring Example 

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z
2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

unbalanced... 

...balanced 

1
2

3

4

5

6

7



14 

Restructure Algorithm 
Algorithm restructure(x): 
 
 Input: A node x of a binary search tree T that has both a parent y 

and a grandparent z 
 Output: Tree T restructured by a rotation (either  
  single or double) involving nodes x, y, and z. 
 
1. Let (a, b, c) be an inorder listing of the nodes x, y, and z, and let (T0, 

T1, T2, T3) be an inorder listing of the the four subtrees of x, y, and 
z, not rooted at x, y, or z.  

2. Replace the subtree rooted at z with a new subtree rooted at b 
3. Let a be the left child of b and let T0, T1 be the left and right 

subtrees of a, respectively. 
4. Let c be the right child of b and let T2, T3 be the left and right 

subtrees of c, respectively. 
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Removal 
• First remove the node as in a BST. 
• Performing a removeExternal(w) can cause T to 

become unbalanced. 
• Let z be the first unbalanced node encountered while 

travelling up the tree from w.  
• y = child of z with higher height (y ≠ ancestor of w) 
• x = child of y with higher height, or either child if two 

children of y have the same height. 
• Perform operation restructure(x) to restore balance at 

the subtree rooted at z. 
• As this restructuring may upset the balance of another 

node higher in the tree, we must continue checking for 
balance until the root of T is reached. 
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Removal Example 
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Removal Example (2) 

Whew, balanced! 
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Oh no, unbalanced! 

Choose 50 as x. 



Next lecture … 

• Heaps (8.3) 
• Midterm 

 
• Midterm will be held on Wednesday June 

26th in CLH F. On June 26th, we will have 
a lecture from 7:00pm to 8:15pm and then 
the exam will be from 8:30pm to 10:00pm. 
Please note that the lecture and the exam 
will be held in CLH F on June 26th. 
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