
Heaps 
 

cse2011 
section 8.3 of textbook 

1 



2 

Priority Queues 

• Data structure supporting the following 
operations: 
– insert (equivalent to enqueue) 
– deleteMin (or deleteMax) (equivalent to dequeue) 
– Other operations (optional) 

 
• Applications: 

– Emergency room waiting list 
– Routing priority at routers in a network 
– Printing job scheduling 

 
 



3 

Simple Implementations of PQs 

• Unsorted linked list 
– insertion O( ?) 
– deleteMin O( ?) 

• Sorted linked list 
– insertion O( ?) 
– deleteMin O( ?) 

• Unsorted array 
– insertion O(? ) 
– deleteMin O(? ) 

• Sorted array 
– insertion O( ?) 
– deleteMin O( ?) 

• A data structure more 
efficient for PQs is 
heaps. 



4 

Complete Binary Trees 

• Let h be the height of a binary tree. 
– for i = 0, … , h − 1, there are 2i nodes at depth i. 

• that is, all levels except the last are full. 
– at depth h, the nodes are filled from left to right. 

 

1 

2 

2h−1 

1 

keys 
0 

1 

h−1 

h 

depth 



5 

Complete Binary Trees (2) 
• Given a complete binary tree of height h and size n, 
 2h ≤ n ≤ 2h+1  – 1 

 
• Which data structure is better for implementing 

complete binary trees, arrays or linked structures? 
 

1 

2 

2h−1 

1 

keys 
0 

1 

h−1 

h 

depth 



6 

Array Implementation of Binary Trees 

Each node v is stored at index i defined as 
follows: 

• If v is the root, i = 1 
• The left child of v is in position  2i 
• The right child of v is in position  2i + 1 

6 

1 

2 3 

6 4 5 

A 

F E 

D 

C 

B 



7 

Heaps 
• A heap is a binary tree 

storing keys at its nodes and 
satisfying the following 
properties: 
– Heap-Order: for every internal 

node v other than the root, 
key(v) ≥ key(parent(v)) 

– Complete Binary Tree: let h be 
the height of the heap 

• for i = 0, … , h − 1, there 
are 2i nodes at depth i. 

• at depth h, the nodes are 
filled from left to right. 

2 

6 5 

7 9 

• The last node of a heap is 
the rightmost node of depth 
h. 

• Where can we find the 
smallest key in a min heap? 
The largest key? 
 

last node 



8 

Examples that are not heaps 



9 

Height of a Heap  
• Theorem: A heap storing n keys has height O(log n) 
 Proof: (we apply the complete binary tree property) 

– Let h be the height of a heap storing n keys 
– Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at 

depth h, we have n ≥ 1 + 2 + 4 + … + 2h−1  + 1  

– Thus, n ≥ 2h , i.e., h ≤ log n 

1 

2 

2h−1 

1 

keys 
0 

1 

h−1 

h 

depth 



10 

Max Heap 

• The definition we just discussed is for a min 
heap.   

• Analogously, we can declare a max heap if we 
need to implement deleteMax operation 
instead of deleteMin. 
 
 



11 

Heaps and Priority Queues 

• We can use a heap to implement a priority queue 
• We store a (key, element) item at each internal 

node 
• We keep track of the position of the last node 

 
(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 



12 

Insertion into a Heap 
• Method insert of the 

priority queue ADT 
corresponds to the 
insertion of a key k to the 
heap 

• The insertion algorithm 
consists of three steps 
– Find the insertion node z 

(the new last node) 
– Store k at z 
– Restore the heap-order 

property (discussed next) 

2 

6 5 

7 9 

insertion node 

2 

6 5 

7 9 1 

z 

z 



13 

Up-heap Percolation  
(up-heap bubbling) 

• After the insertion of a new key k, the heap-order property may 
be violated 

• Algorithm upheap restores the heap-order property by swapping k 
along an upward path from the insertion node 

• Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k  

• Since a heap has height O(log n), upheap runs in O(log n) time 

2 

1 5 

7 9 6 z 

1 

2 5 

7 9 6 z 



14 

Removal from a Heap 
• Method deleteMin of 

the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap 

• The removal algorithm 
consists of three steps 
– Replace the root key 

with the key of the last 
node w 

– Remove w  
– Restore the heap-order 

property (discussed 
next) 

2 

6 5 

7 9 

last node 

w 

7 

6 5 

9 
w 

new last node 



15 

Down-heap Percolation 
Down-heap bubbling 

• After replacing the root key with the key k of the last node, the 
heap-order property may be violated 

• Algorithm down-heap restores the heap-order property by 
swapping key k along a downward path from the root 

• If the node has two children, it is swapped with the one which has 
the smallest key. 

• Up-heap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k  

• Since a heap has height O(log n), down-heap runs in O(log n) time 

7 

6 5 

9 
w 

5 

6 7 

9 
w 



16 

Next lecture … 

• Heap Sort 
• Hash Tables, part 1 

 


	Heaps��cse2011�section 8.3 of textbook
	Priority Queues
	Simple Implementations of PQs
	Complete Binary Trees
	Complete Binary Trees (2)
	Array Implementation of Binary Trees
	Heaps
	Examples that are not heaps
	Height of a Heap 
	Max Heap
	Heaps and Priority Queues
	Insertion into a Heap
	Up-heap Percolation �(up-heap bubbling)
	Removal from a Heap
	Down-heap Percolation�Down-heap bubbling
	Next lecture …

