Heaps

cse2011 section 8.3 of textbook

1

Priority Queues

- Data structure supporting the following operations:
 - insert (equivalent to enqueue)
 - deleteMin (or deleteMax) (equivalent to dequeue)
 - Other operations (optional)
- Applications:
 - Emergency room waiting list
 - Routing priority at routers in a network
 - Printing job scheduling

Simple Implementations of PQs

- Unsorted linked list
 - insertion O(?)
 - deleteMin O(?)
- Sorted linked list
 - insertion O(?)
 - deleteMin O(?)

- Unsorted array
 - insertion O(?)
 - deleteMin O(?)
- Sorted array
 - insertion O(?)
 - deleteMin O(?)
- A data structure more efficient for PQs is heaps.

Complete Binary Trees

- Let *h* be the height of a binary tree.
 - for $\mathbf{i} = 0, \dots, \mathbf{h} 1$, there are $2^{\mathbf{i}}$ nodes at depth \mathbf{i} .
 - that is, all levels except the last are full.
 - at depth *h*, the nodes are filled from left to right.

Complete Binary Trees (2)

- Given a complete binary tree of height *h* and size *n*,
 2^h ≤ n ≤ 2^{h+1} − 1
- Which data structure is better for **implementing** complete binary trees, arrays **or** linked structures?

Array Implementation of Binary Trees

Each node **v** is stored at index *i* defined as follows:

- If v is the root, i = 1
- The left child of v is in position 2i
- The **right** child of *v* is in position **2***i* + **1**

Heaps

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every internal node v other than the root,
 key(v) ≥ key(parent(v))
 - Complete Binary Tree: let *h* be the height of the heap
 - for $\mathbf{i} = 0, \dots, \mathbf{h} 1$, there are $2^{\mathbf{i}}$ nodes at depth \mathbf{i} .
 - at depth *h*, the nodes are filled from left to right.

- The last node of a heap is
 the rightmost node of depth
 h.
- Where can we find the smallest key in a min heap?
 The largest key?

Examples that are not heaps

Height of a Heap

- Theorem: A heap storing *n* keys has height *O*(log *n*)
 Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$

Max Heap

- The definition we just discussed is for a *min* heap.
- Analogously, we can declare a *max* heap if we need to implement *deleteMax* operation instead of *deleteMin*.

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node

Insertion into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z
 (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Up-heap Percolation (up-heap bubbling)

- After the insertion of a new key *k*, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time

Removal from a Heap

- Method *deleteMin* of the priority queue ADT corresponds to the removal of the root key from the heap
- The removal algorithm consists of three steps
 - Replace the root key with the key of the last node w
 - Remove w
 - Restore the heap-order property (discussed next)

Down-heap Percolation Down-heap bubbling

- After replacing the root key with the key *k* of the last node, the heap-order property may be violated
- Algorithm down-heap restores the heap-order property by swapping key k along a downward path from the root
- If the node has two children, it is swapped with the one which has the smallest key.
- Up-heap terminates when key *k* reaches a leaf or a node whose children have keys greater than or equal to *k*
- Since a heap has height $O(\log n)$, down-heap runs in $O(\log n)$ time

Next lecture ...

- Heap Sort
- Hash Tables, part 1