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Hashing 
• BST, AVL trees: O(logN) for insertion, deletions 

and searches. 
• Hashing is a technique used for performing 

insertion, deletions and searches in constant 
average time (i.e., O(1)). 

• Finding min, finding max, printing the whole 
collection in sorted order in linear time are not 
supported. 

• A hash table data structure consists of: 
– Hash function h 
– Array of size N  (bucket array) 
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Example 
• We design a hash table 

for a dictionary storing 
items (SIN, Name), where 
SIN (social insurance 
number) is a ten-digit 
positive integer 

• Our hash table uses an 
array of size N = 10,000 
and the hash function 
h(x) = x mod N 

• We use chaining to 
handle collisions 

• Assuming integer keys, 
how do we map keys to 
hash table entries? 
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Hash Functions and Hash Tables 

• A hash function h maps keys 
of a given type to integers in a 
fixed interval [0, N - 1] 

• Example: 
 h(x) = x mod N 
is a hash function for integer 
keys 

• The integer h(x) is called the 
hash value of key x 

• The goal of a hash function is 
to uniformly disperse keys in 
the range [0, N - 1] 

• A hash table for a given key type 
consists of 
– Hash function h 
– Array of size N 

 
• A collision occurs when two keys in 

the dictionary have the same hash 
value. 

• Collision handing schemes: 
– Chaining: colliding items are stored 

in a sequence 
– Open addressing: the colliding 

item is placed in a different cell of 
the table 
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Design Issues 

• Hash function 
– For integer keys (compression functions) 
– For strings 

• Collision handling 
– Separate chaining 
– Probing (open addressing) 

• Linear probing 
• Quadratic probing 
• Double hashing 

• Table size (should be a prime number) 
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Hash Functions 

• Division: 
– h2 (y) = y mod N 
– The size N of the hash 

table is usually chosen to 
be a prime number to 
minimize the number of 
collisions  

– The reason has to do with 
number theory and is 
beyond the scope of this 
course 

• Multiply, Add and 
Divide (MAD): 
– h2 (y) = (ay + b) mod N 
– a and b are nonnegative 

integers such that 
  a mod N ≠ 0 

– Otherwise, every integer 
would map to the same 
value b  
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Collision Handling 

• Collisions occur when 
different elements are 
mapped to the same cell 

• Separate Chaining: let 
each cell in the table 
point to a linked list of 
entries that map there 

• Separate chaining is 
simple, but requires 
additional memory 
outside the table 
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Separate Chaining 

• Use chaining to set up lists of items with same index 
• The expected search/insertion/removal time is O(n/N), 

provided that the indices are uniformly distributed 
– N = hash table size 
– n = number of elements in the table 

• If n = O(N), the expected running time is O(1) 
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Load Factor – Separate Chaining 
• Define the load factor λ = n/N 

– n = number of elements in the hash table 
– N = hash table size (prime number) 

 
• To obtain best performance with separate chaining, 

ensure λ ≤ 1. 
 

• As we add more elements to the hash table, λ goes up 
⇒ rehashing (allocate a bigger table, define a new 
hash function, and copy the elements to the new 
array). 
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Collision Handling 

 Separate chaining 
   Probing (open addressing) 
 Linear probing 
 Quadratic probing 
 Double hashing 
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Linear Probing 

• Linear probing handles 
collisions by placing the 
colliding item in the next 
(circularly) available table 
cell 

• Each table cell inspected is 
referred to as a “probe” 

• Colliding items lump 
together; future collisions 
will cause a longer 
sequence of probes 

• Example: 
– h(x) = x mod 13 
– Insert keys 18, 41, 22, 44, 

59, 32, 31, 73, in this 
order 

– Remove 44, 32, 73, 31 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 
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Linear Probing Example 

18 41 22 44 59 32 

44 32 

31 

31 

73 

73 

1. h(x) = x mod 13 
2. h(x) = (h(x) +1) mod 13 
3. h(x) = (h(x) +2) mod 13 
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Search with Linear Probing 
• Consider a hash table A that 

uses linear probing 
• get(k) 

– We start at cell h(k)  
– We probe consecutive 

locations until one of the 
following occurs 

• An item with key k is 
found, or 

• An empty cell (null) is 
found, or 

• N cells have been 
unsuccessfully probed  

Algorithm  get(k)  
 i ← h(k) 
 p ← 0 
 repeat 
  c ← A[i] 
  if c == ∅ 
   return NULL 
   else if c.key () = k 
   return c.element() 
  else 
   i ← (i + 1) mod N 

  p ← p + 1 
until   p = N 

 return NULL 
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Removal and Insertion with Probing 
• remove(k) 

– Call get(k) to get the element. 
– Should we set the now empty cell to NULL? 

• No.  It would mess up the search procedure.  See example on the next 
slide. 

– Return the element. 
• A cell has three states: 

– null: brand new, never used. get(x) stops when a null cell 
is reached. 

– in use: currently used. 
– available: previously used, now available but unused. 

get(x) continues the search when encountering an 
available cell. 

• Example of available cells: key has value -1. 
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Example with remove(k) 

18 41 22 44 59 32 

44 32 

31 

31 

73 

73 

remove(59) 
get(31) 
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Linear Probing: Removal and Insertion 

• To handle insertions and 
deletions, we marked the 
deleted cells as “available” 
instead of null. 

• remove(k) 
– We search for a cell with key 

k  
– If such an item is found, we 

mark the cell as “available” 
and we return the element. 

– Else, we return NULL 

• put(k, e) 
 If table is not full, we 

start at cell h(k).  If this 
cell is occupied:  
– We probe consecutive cells 

until a cell i is found that is 
either null or marked as 
“available”. 

– We store item (k, e) in cell 
I 
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Load Factor – Linear Probing 

• Define the load factor λ = n/N 
– n = number of elements in the hash table 
– N = hash table size (prime number) 

 
• To obtain best performance with linear probing, ensure 

that λ ≤ 0.5. 
 

• As we add more elements to the hash table, λ goes up 
⇒ rehashing (allocate a bigger table, define a new hash 
function, and copy the elements to the new array). 
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Next  lecture … 

• Probing (open addressing) 
– Linear probing 
– Quadratic probing 
– Double hashing 

• Rehashing 
• Hash functions for strings 
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