
Hashing I

cse2011
section 9.2 of textbook

1

2

Hashing
• BST, AVL trees: O(logN) for insertion, deletions

and searches.
• Hashing is a technique used for performing

insertion, deletions and searches in constant
average time (i.e., O(1)).

• Finding min, finding max, printing the whole
collection in sorted order in linear time are not
supported.

• A hash table data structure consists of:
– Hash function h
– Array of size N (bucket array)

3

Example
• We design a hash table

for a dictionary storing
items (SIN, Name), where
SIN (social insurance
number) is a ten-digit
positive integer

• Our hash table uses an
array of size N = 10,000
and the hash function
h(x) = x mod N

• We use chaining to
handle collisions

• Assuming integer keys,
how do we map keys to
hash table entries?

∅

∅
∅

∅

∅

0
1
2
3
4

9997
9998
9999

…

451-229-0004 981-101-0004

200-751-9998

025-612-0001

4

Hash Functions and Hash Tables

• A hash function h maps keys
of a given type to integers in a
fixed interval [0, N - 1]

• Example:
 h(x) = x mod N
is a hash function for integer
keys

• The integer h(x) is called the
hash value of key x

• The goal of a hash function is
to uniformly disperse keys in
the range [0, N - 1]

• A hash table for a given key type
consists of
– Hash function h
– Array of size N

• A collision occurs when two keys in

the dictionary have the same hash
value.

• Collision handing schemes:
– Chaining: colliding items are stored

in a sequence
– Open addressing: the colliding

item is placed in a different cell of
the table

5

Design Issues

• Hash function
– For integer keys (compression functions)
– For strings

• Collision handling
– Separate chaining
– Probing (open addressing)

• Linear probing
• Quadratic probing
• Double hashing

• Table size (should be a prime number)

6

Hash Functions

• Division:
– h2 (y) = y mod N
– The size N of the hash

table is usually chosen to
be a prime number to
minimize the number of
collisions

– The reason has to do with
number theory and is
beyond the scope of this
course

• Multiply, Add and
Divide (MAD):
– h2 (y) = (ay + b) mod N
– a and b are nonnegative

integers such that
 a mod N ≠ 0

– Otherwise, every integer
would map to the same
value b

7

Collision Handling

• Collisions occur when
different elements are
mapped to the same cell

• Separate Chaining: let
each cell in the table
point to a linked list of
entries that map there

• Separate chaining is
simple, but requires
additional memory
outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

8

Separate Chaining

• Use chaining to set up lists of items with same index
• The expected search/insertion/removal time is O(n/N),

provided that the indices are uniformly distributed
– N = hash table size
– n = number of elements in the table

• If n = O(N), the expected running time is O(1)

9

Load Factor – Separate Chaining
• Define the load factor λ = n/N

– n = number of elements in the hash table
– N = hash table size (prime number)

• To obtain best performance with separate chaining,

ensure λ ≤ 1.

• As we add more elements to the hash table, λ goes up
⇒ rehashing (allocate a bigger table, define a new
hash function, and copy the elements to the new
array).

10

Collision Handling

 Separate chaining
 Probing (open addressing)
 Linear probing
 Quadratic probing
 Double hashing

11

Linear Probing

• Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table
cell

• Each table cell inspected is
referred to as a “probe”

• Colliding items lump
together; future collisions
will cause a longer
sequence of probes

• Example:
– h(x) = x mod 13
– Insert keys 18, 41, 22, 44,

59, 32, 31, 73, in this
order

– Remove 44, 32, 73, 31

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

12

Linear Probing Example

18 41 22 44 59 32

44 32

31

31

73

73

1. h(x) = x mod 13
2. h(x) = (h(x) +1) mod 13
3. h(x) = (h(x) +2) mod 13

13

Search with Linear Probing
• Consider a hash table A that

uses linear probing
• get(k)

– We start at cell h(k)
– We probe consecutive

locations until one of the
following occurs

• An item with key k is
found, or

• An empty cell (null) is
found, or

• N cells have been
unsuccessfully probed

Algorithm get(k)
 i ← h(k)
 p ← 0
 repeat
 c ← A[i]
 if c == ∅
 return NULL
 else if c.key () = k
 return c.element()
 else
 i ← (i + 1) mod N

 p ← p + 1
until p = N

 return NULL

14

Removal and Insertion with Probing
• remove(k)

– Call get(k) to get the element.
– Should we set the now empty cell to NULL?

• No. It would mess up the search procedure. See example on the next
slide.

– Return the element.
• A cell has three states:

– null: brand new, never used. get(x) stops when a null cell
is reached.

– in use: currently used.
– available: previously used, now available but unused.

get(x) continues the search when encountering an
available cell.

• Example of available cells: key has value -1.

15

Example with remove(k)

18 41 22 44 59 32

44 32

31

31

73

73

remove(59)
get(31)

16

Linear Probing: Removal and Insertion

• To handle insertions and
deletions, we marked the
deleted cells as “available”
instead of null.

• remove(k)
– We search for a cell with key

k
– If such an item is found, we

mark the cell as “available”
and we return the element.

– Else, we return NULL

• put(k, e)
 If table is not full, we

start at cell h(k). If this
cell is occupied:
– We probe consecutive cells

until a cell i is found that is
either null or marked as
“available”.

– We store item (k, e) in cell
I

17

Load Factor – Linear Probing

• Define the load factor λ = n/N
– n = number of elements in the hash table
– N = hash table size (prime number)

• To obtain best performance with linear probing, ensure

that λ ≤ 0.5.

• As we add more elements to the hash table, λ goes up
⇒ rehashing (allocate a bigger table, define a new hash
function, and copy the elements to the new array).

18

Next lecture …

• Probing (open addressing)
– Linear probing
– Quadratic probing
– Double hashing

• Rehashing
• Hash functions for strings

	Hashing I��cse2011�section 9.2 of textbook
	Hashing
	Example
	Hash Functions and Hash Tables
	Design Issues
	Hash Functions
	Collision Handling
	Separate Chaining
	Load Factor – Separate Chaining
	Collision Handling
	Linear Probing
	Linear Probing Example
	Search with Linear Probing
	Removal and Insertion with Probing
	Example with remove(k)
	Linear Probing: Removal and Insertion
	Load Factor – Linear Probing
	Next lecture …

