Hashing |

cse2011

section 9.2 of textbook

Hashing

BST, AVL trees: O(logN) for insertion, deletions
and searches.

Hashing is a technique used for performing
insertion, deletions and searches in constant
average time (i.e., O(1)).

Finding min, finding max, printing the whole
collection in sorted order in linear time are not
supported.

A hash table data structure consists of:

— Hash function h
— Array of size N (bucket array)

Example

We design a hash table
for a dictionary storing
items (SIN, Name), where
SIN (social insurance
number) is a ten-digit
positive integer

025-612-0001

\ 4

Our hash table uses an
array of size N = 10,000

PrWNRO
? [QIQ] 1 [Q

and the hash function

451-229-0004 981-101-0004

\ 4

h(x) =x mod N
We use chaining to
handle collisions 9997 |©

Assuming integer keys, 9998 |
how do we map keysto 9999 [@
hash table entries?

200-751-9998

\ 4

Hash Functions and Hash Tables

A hash function h maps keys * Ahash table for a given key type
of a given type to integers in a consists of
fixed interval [0, N - 1] — Hash function h
Example: — Array of size N
h(x) =xmod N
is a hash function for integer e A collision occurs when two keys in
keys the dictionary have the same hash
value.

The integer h(x) is called the

. lision handi h :
hash value of key x Collision handing schemes

— Chaining: colliding items are stored

The goal of a hash function is in a sequence
to uniformly disperse keys in — Open addressing: the colliding
the range [0, N - 1] item is placed in a different cell of

the table

Design Issues

e Hash function

— For integer keys (compression functions)

— For strings

e Collision handling
— Separate chaining

— Probing (open addressing)
e Linear probing
e Quadratic probing
e Double hashing

e Table size (should be a prime number)

Hash Functions

e Division: e Multiply, Add and
— h,(y) =y mod N Divide (MAD):
— The size N of the hash — h,(y)=(ay + b) mod N

table is usually chosen to
be a prime number to
minimize the number of
collisions

— a and b are nonnegative
integers such that
amodN =0

— Otherwise, every integer
would map to the same
value b

— The reason has to do with
number theory and is
beyond the scope of this
course

Collision Handling

e Collisions occur when 0|2
: ~1—{025-612-0001)
different elements are % >
mapped to the same cell 3|z
4 [~1—{451-229-0004}—981-101-0004)

e Separate Chaining: let

each cell in the table
point to a linked list of * Separate chaining is

entries that map there ~ Simple, but requires
additional memory

outside the table

Separate Chaining

A e
1

2 P
3

4 —{

Use chaining to set up lists of items with same index
The expected search/insertion/removal time is O(n/N),
provided that the indices are uniformly distributed

— N = hash table size

— n = number of elements in the table

If n = O(N), the expected running time is O(1)

Load Factor — Separate Chaining

 Define the load factor A = n/N

— n = number of elements in the hash table
— N = hash table size (prime number)

* To obtain best performance with separate chaining,
ensure A < 1.

e As we add more elements to the hash table, A goes up
= rehashing (allocate a bigger table, define a new

hash function, and copy the elements to the new
array).

Collision Handling

d Probing (open addressing)
¢ Linear probing
¢ Quadratic probing
¢ Double hashing

10

Linear Probing

Linear probing handles
collisions by placing the
colliding item in the next
(circularly) available table
cell

Each table cell inspected is
referred to as a “probe”

Colliding items lump
together; future collisions
will cause a longer
sequence of probes

e Example:
— h(X) =x mod 13
— Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this
order

— Remove 44, 32, 73, 31

0123456 7 8 9101112

0123456 7 8 9101112

Linear Probing Example

1. h(x)=xmod 13
2. h(x)=(h(x) +1) mod 13
3. h(x)=(h(x) +2) mod 13

18 41 22 44 59 32 31 73

41 18 44|59 |32(22|31| 73

01 2 3 4 5 6 7 8 9 10 11 12

12

Search with Linear Probing

e Consider a hash table A that Algorithm get(k)
uses linear probing i h(K)
o get(k) p«0
— We start at cell h(k) repeat
— We probe consecutive c <« A[i]
locations until one of the ifc==0
following occurs return NULL
* Anitem with key K is else if c.key () =k
found, or return c.element()
e An empty cell (null) is else
found, or i< (i+1)modN
* N cells have been p<—p+1
unsuccessfully probed until p=N
return NULL

Removal and Insertion with Probing

 remove(k)
— Call get(k) to get the element.

— Should we set the now empty cell to NULL?

* No. It would mess up the search procedure. See example on the next
slide.

— Return the element.

e A cell has three states:

— null: brand new, never used. get(x) stops when a null cell
is reached.

— in use: currently used.

— available: previously used, now available but unused.
get(x) continues the search when encountering an
available cell.

e Example of available cells: key has value -1.

14

Example with remove(k)

18 41 22 44 59 32 31 73

remove(59)

get(31) 31 79
44\32\\\

41 18144159 32|22|31 |73

01 2 3 4 5 6 7 8 9 10 11 12

15

Linear Probing: Removal and Insertion

e To handle insertions and
deletions, we marked the
deleted cells as “available”
instead of null.

* remove(K)
— We search for a cell with key

K

— If such an item is found, we
mark the cell as “available”
and we return the element.

— Else, we return NULL

. put(k, e)

If table is not full, we
start at cell h(k). If this
cell is occupied:
— We probe consecutive cells
until a cell i is found that is

either null or marked as
“available”.

— We store item (K, e) in cell
I

16

Load Factor — Linear Probing

 Define the load factor A = n/N
— n = number of elements in the hash table
— N = hash table size (prime number)

 To obtain best performance with linear probing, ensure
that A <0.5.

e As we add more elements to the hash table, A goes up
= rehashing (allocate a bigger table, define a new hash
function, and copy the elements to the new array).

17

Next lecture ...

 Probing (open addressing)
— Linear probing
— Quadratic probing
— Double hashing

* Rehashing

e Hash functions for strings

18

	Hashing I��cse2011�section 9.2 of textbook
	Hashing
	Example
	Hash Functions and Hash Tables
	Design Issues
	Hash Functions
	Collision Handling
	Separate Chaining
	Load Factor – Separate Chaining
	Collision Handling
	Linear Probing
	Linear Probing Example
	Search with Linear Probing
	Removal and Insertion with Probing
	Example with remove(k)
	Linear Probing: Removal and Insertion
	Load Factor – Linear Probing
	Next lecture …

