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Collision Handling 

 Separate chaining 
   Probing (open addressing) 
 Linear probing 
 Quadratic probing 
 Double hashing 
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Quadratic Probing 

• Linear probing: 
 Insert item (k, e) 
 i = h(k) 
 A[i] is occupied 
 Try A[(i+1) mod N]: used 
 Try A[(i+2) mod N] 
 and so on until  
 an empty cell is found 

• Quadratic probing 
 A[i] is occupied 
 Try A[(i+1) mod N]: used 
 Try A[(i+22) mod N]: used 
 Try A[(i+32) mod N]  
 and so on 

 
• May not be able to find an 

empty cell if N is not prime, 
or the hash table is at least 
half full 
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Double Hashing 
• Double hashing uses a 

secondary hash function d(k) 
and handles collisions by 
placing an item in the first 
available cell of the series 
 (i + j × d(k)) mod N 
 for j = 0,  1, … , N − 1 

• The secondary hash function 
d(k) cannot have zero values 

• The table size N must be a 
prime to allow probing of all 
the cells 

Insert item (k, e) 
i = h(k) 
A[i] is occupied 
Try A[(i+d(k))mod N]: used 
Try A[(i+2d(k))mod N]: used 
Try A[(i+3d(k))mod N] 
and so on until  
an empty cell is found 
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• Consider a hash 
table storing integer 
keys that handles 
collision with double 
hashing 
– N = 13  
– h(k) = k mod 13  
– d(k) = 7 − k mod 7  

• Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order 

Example of Double Hashing 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

31   41     18 32 59 73 22 44   
0 1 2 3 4 5 6 7 8 9 10 11 12 

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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Double Hashing (2) 
• d(k) should be chosen to minimize clustering 
• Common choice of compression map for the 

secondary hash function:   
 d(k) = q − k mod q  
 where 

– q < N 
– q is a prime 

• The possible values for d(k) are 
  1, 2, … , q 
 

• Note: linear probing has d(k) = 1. 
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Comparing Collision Handling Schemes 
α = n/N 
Unsuccessful: key not found 
Successful: key found 
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Comparing Collision Handling Schemes (2) 

• Separate chaining: 
 – simple implementation 
 – faster than open 

addressing in general 
 – using more memory  
 
• Open addressing: 
 – using less memory 
 – slower than chaining in 

general 
 – more complex removals  

• Linear probing: items are 
clustered into contiguous 
runs (primary clustering). 
 

• Quadratic probing:  
 secondary clustering. 
 
• Double hashing: distributes 

keys more uniformly than 
linear probing does. 



9 

Performance of Hashing 
• In the worst case, searches, 

insertions and removals on a 
hash table take O(n) time. 

• The worst case occurs when all 
the keys inserted into the map 
collide. 

• The load factor α = n/N affects 
the performance of a hash 
table. 

• Assuming that the hash values 
are like random numbers, it can 
be shown that the expected 
number of probes for an 
insertion with open addressing 
is 
 1 / (1 − α)  

• The expected running time of 
all the dictionary ADT 
operations in a hash table is 
O(1). 

• In practice, hashing is very fast 
provided the load factor is not 
close to 100%. 

 ⇒ rehashing. 
• Applications of hash tables: 

– small databases 
– compilers 
– browser caches 

 ⇒ converting non-integer keys 
to integers. 
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Keys That Are Strings 
• We need to convert a string to an integer before 

hashing. 
 

• One option is to add up the ASCII values of the 
characters in the string. 
– Is this a good strategy? 

 
• Polynomial accumulation: 

– We partition the bits of the key into a sequence of 
components of fixed length (e.g., 8, 16 or 32 bits). 
   x0 x1 … xn−1 

– We evaluate the polynomial 
   p(z) = x0 + x1 z  + x2 z2 + … + xn−1zn−1 

 at a fixed value z, ignoring overflows. 
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Polynomial Accumulation 

• Polynomial p(z) can be evaluated in O(n) time 
using Horner’s rule: 
– The following polynomials are successively computed, 

each from the previous one in O(1) time 
  p0(z) = xn−1 
  pi (z) = xn−i−1 + zpi−1(z) 

  (i = 1, 2, …, n −1) 

• We have p(z) = pn−1(z) 
• Good z values: 33, 37, 39, 41. 

o Especially suitable for strings  
• z = 33 gives at most 6 collisions on a set of 50,000 English words. 
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Summary 

• Purpose of hash tables: to 
obtain O(1) expected query 
time using O(n+N) space. 

• If the keys are not integers, 
convert them to integer 
keys. 

• Map integer keys to the 
hash table entries using a 
compression map function. 

• If collision occurs, use one 
of the collision handling 
schemes, taking into 
account available memory 
space. 

• If the load factor λ = n/N 
approaches the specified 
threshold, rehash. 



Next lecture … 

• Graphs (chapter 13) 
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