
Hashing II

cse2011
section 9.2 of textbook

1

2

Collision Handling

 Separate chaining
 Probing (open addressing)
 Linear probing
 Quadratic probing
 Double hashing

3

Quadratic Probing

• Linear probing:
 Insert item (k, e)
 i = h(k)
 A[i] is occupied
 Try A[(i+1) mod N]: used
 Try A[(i+2) mod N]
 and so on until
 an empty cell is found

• Quadratic probing
 A[i] is occupied
 Try A[(i+1) mod N]: used
 Try A[(i+22) mod N]: used
 Try A[(i+32) mod N]
 and so on

• May not be able to find an

empty cell if N is not prime,
or the hash table is at least
half full

4

Double Hashing
• Double hashing uses a

secondary hash function d(k)
and handles collisions by
placing an item in the first
available cell of the series
 (i + j × d(k)) mod N
 for j = 0, 1, … , N − 1

• The secondary hash function
d(k) cannot have zero values

• The table size N must be a
prime to allow probing of all
the cells

Insert item (k, e)
i = h(k)
A[i] is occupied
Try A[(i+d(k))mod N]: used
Try A[(i+2d(k))mod N]: used
Try A[(i+3d(k))mod N]
and so on until
an empty cell is found

5

• Consider a hash
table storing integer
keys that handles
collision with double
hashing
– N = 13
– h(k) = k mod 13
– d(k) = 7 − k mod 7

• Insert keys 18, 41,
22, 44, 59, 32, 31,
73, in this order

Example of Double Hashing

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

6

Double Hashing (2)
• d(k) should be chosen to minimize clustering
• Common choice of compression map for the

secondary hash function:
 d(k) = q − k mod q
 where

– q < N
– q is a prime

• The possible values for d(k) are
 1, 2, … , q

• Note: linear probing has d(k) = 1.

7

Comparing Collision Handling Schemes
α = n/N
Unsuccessful: key not found
Successful: key found

8

Comparing Collision Handling Schemes (2)

• Separate chaining:
 – simple implementation
 – faster than open

addressing in general
 – using more memory

• Open addressing:
 – using less memory
 – slower than chaining in

general
 – more complex removals

• Linear probing: items are
clustered into contiguous
runs (primary clustering).

• Quadratic probing:
 secondary clustering.

• Double hashing: distributes

keys more uniformly than
linear probing does.

9

Performance of Hashing
• In the worst case, searches,

insertions and removals on a
hash table take O(n) time.

• The worst case occurs when all
the keys inserted into the map
collide.

• The load factor α = n/N affects
the performance of a hash
table.

• Assuming that the hash values
are like random numbers, it can
be shown that the expected
number of probes for an
insertion with open addressing
is
 1 / (1 − α)

• The expected running time of
all the dictionary ADT
operations in a hash table is
O(1).

• In practice, hashing is very fast
provided the load factor is not
close to 100%.

 ⇒ rehashing.
• Applications of hash tables:

– small databases
– compilers
– browser caches

 ⇒ converting non-integer keys
to integers.

10

Keys That Are Strings
• We need to convert a string to an integer before

hashing.

• One option is to add up the ASCII values of the
characters in the string.
– Is this a good strategy?

• Polynomial accumulation:

– We partition the bits of the key into a sequence of
components of fixed length (e.g., 8, 16 or 32 bits).
 x0 x1 … xn−1

– We evaluate the polynomial
 p(z) = x0 + x1 z + x2 z2 + … + xn−1zn−1

 at a fixed value z, ignoring overflows.

11

Polynomial Accumulation

• Polynomial p(z) can be evaluated in O(n) time
using Horner’s rule:
– The following polynomials are successively computed,

each from the previous one in O(1) time
 p0(z) = xn−1
 pi (z) = xn−i−1 + zpi−1(z)

 (i = 1, 2, …, n −1)

• We have p(z) = pn−1(z)
• Good z values: 33, 37, 39, 41.

o Especially suitable for strings
• z = 33 gives at most 6 collisions on a set of 50,000 English words.

12

Summary

• Purpose of hash tables: to
obtain O(1) expected query
time using O(n+N) space.

• If the keys are not integers,
convert them to integer
keys.

• Map integer keys to the
hash table entries using a
compression map function.

• If collision occurs, use one
of the collision handling
schemes, taking into
account available memory
space.

• If the load factor λ = n/N
approaches the specified
threshold, rehash.

Next lecture …

• Graphs (chapter 13)

13

	Hashing II��cse2011�section 9.2 of textbook
	Collision Handling
	Quadratic Probing
	Double Hashing
	Example of Double Hashing
	Double Hashing (2)
	Comparing Collision Handling Schemes
	Comparing Collision Handling Schemes (2)
	Performance of Hashing
	Keys That Are Strings
	Polynomial Accumulation
	Summary
	Next lecture …

