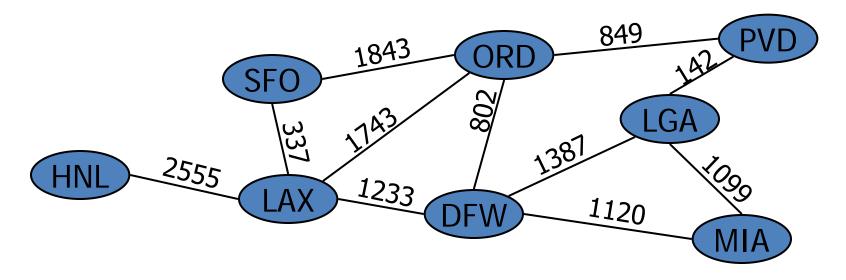
Graphs

cse2011 sections 13.1 and 13.2 of textbook

Graphs

- A graph is a pair (*V*, *E*), where
 - V is a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges
 - Vertices and edges are objects and store elements
- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route

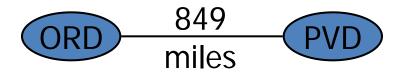


Edge Types

• Directed edge

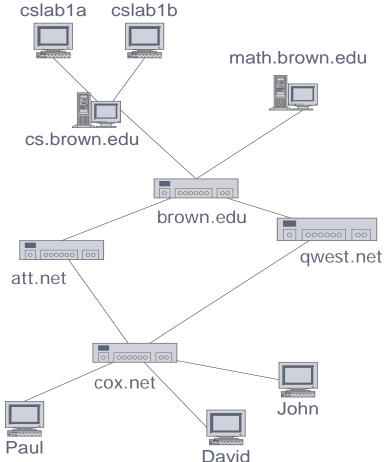
- ordered pair of vertices (u,v)
- first vertex *u* is the origin
- second vertex v is the destination
- e.g., a flight
- Undirected edge
 - unordered pair of vertices (u,v)
 - e.g., a flight route
- Directed graph (digraph)
 - all the edges are directed
 - e.g., flight network
- Undirected graph
 - all the edges are undirected
 - e.g., route network
- Mixed graph

contains both directed and undirected edges



Applications

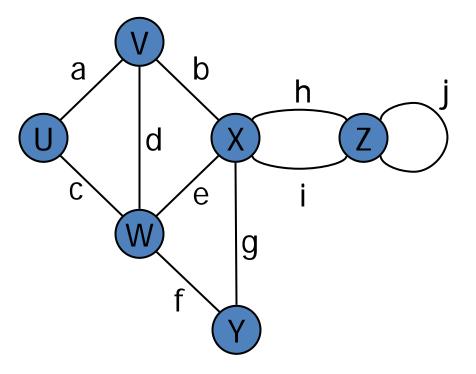
- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram



Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of a
- Edges incident on a vertex
 a, d, and b are incident on V
- Adjacent vertices

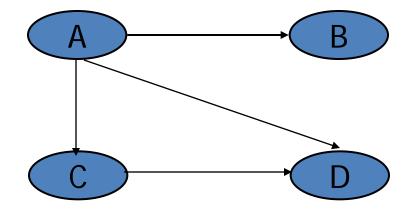
 U and V are adjacent
- **Degree** of a vertex
 - W has degree 4
- Loop
 - j is a loop
 (we will consider only loopless graphs)



Terminology (2)

For directed graphs:

- Origin, destination of an edge
- Outgoing edge
- Incoming edge



• Out-degree of vertex v:

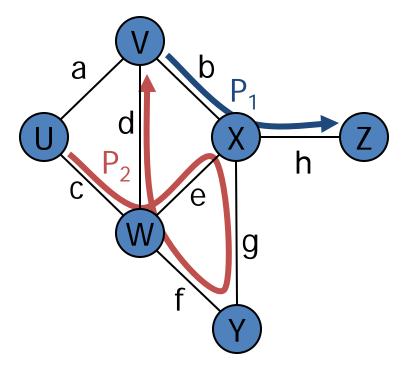
number of outgoing edges of v

- In-degree of vertex v:
 - number of incoming edges of v

Paths

• Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Path length
 - the total <u>number of edges</u> on the path
- Simple path
 - path such that all vertices are distinct (except that the first and last could be the same)
- Examples
 - $P_1 = (V, b, X, h, Z)$ is a simple path
 - P₂=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is **not** simple



Properties of Undirected Graphs

Property 1

 $\boldsymbol{\Sigma}_{\boldsymbol{v}} \deg(\boldsymbol{v}) = 2\boldsymbol{E}$ Proof: each edge is counted twice

Property 2

In an undirected graph with no loops

 $\mathbf{E} \le \mathbf{V} \ (\mathbf{V} - 1)/2$

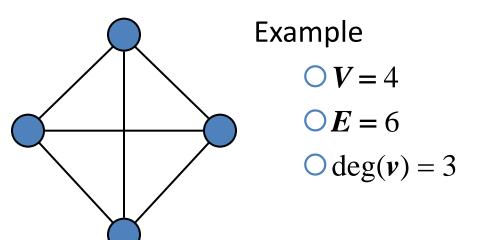
Proof: each vertex has degree at most (V - 1)

What is the bound for a directed graph?

Notation

- V number of vertices
- *E* number of edges

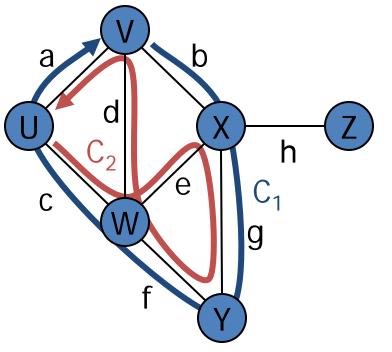
deg(v) degree of vertex v



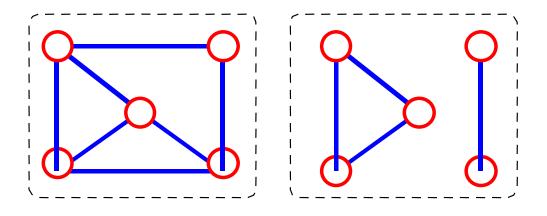
Cycles

• Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
 - cycle such that all its vertices are distinct (except the first and the last)
- Examples
 - C₁=(V,b,X,g,Y,f,W,c,U,a,V) is a simple cycle
 - C₂=(U,c,W,e,X,g,Y,f,W,d,V,a,U) is a cycle that is not simple
- A directed graph is *acyclic* if it has no cycles ⇒ called DAG (directed acyclic graph)



Connectivity – Undirected Graphs

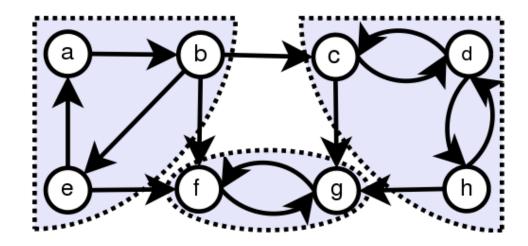


connected not connected

• An undirected graph is *connected* if there is a path **from every** vertex **to every** other vertex.

Connectivity – Directed Graphs

- A **directed** graph is called *strongly connected* if there is a path from every vertex to every other vertex.
- If a directed graph is not strongly connected, but the corresponding undirected graph is connected, then the directed graph is said to be *weakly connected*.



Graph ADT and Data Structures

CSE 2011

Representation of Graphs

 Two popular computer representations of a graph: Both represent the vertex set and the edge set, but in different ways.

1. Adjacency Matrices

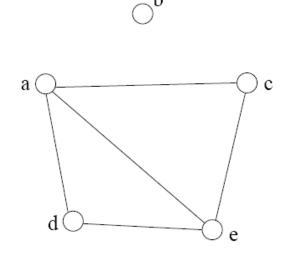
Use a 2D matrix to represent the graph

2. Adjacency Lists

Use a set of linked lists, one list per vertex

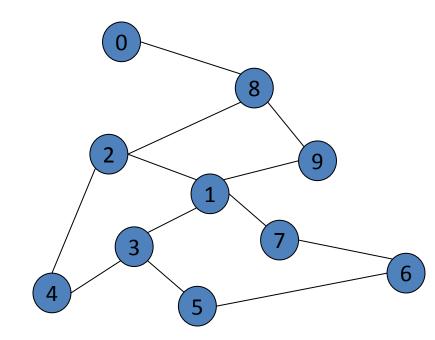
Adjacency Matrix Representation

- 2D array of size **n** x **n** where **n** is the number of vertices in the graph
- A[i][j]=1 if there is an edge connecting vertices i and j; otherwise, A[i][j]=0



	а	b	c	d	e
а	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

Adjacency Matrix Example



	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Adjacency Matrices: Analysis

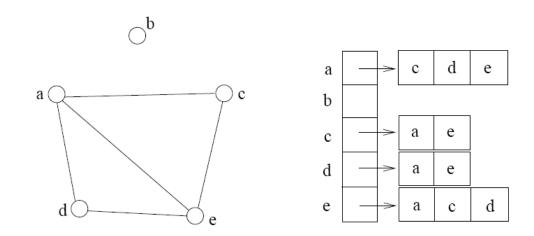
- The storage requirement is $\Theta(V^2)$.
 - not efficient if the graph has few edges.
 - appropriate if the graph is dense; that is $E = \Theta(V^2)$
- If the graph is undirected, the matrix is symmetric. There exist methods to store a symmetric matrix using only half of the space.

– Note: the space requirement is still $\Theta(V^2)$.

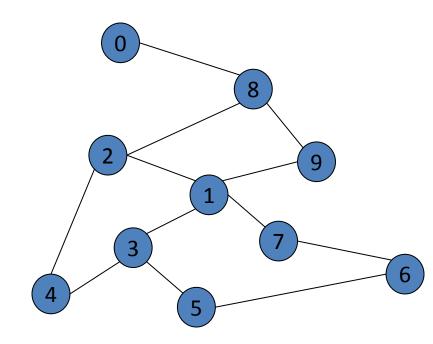
• We can detect in O(1) time whether two vertices are connected.

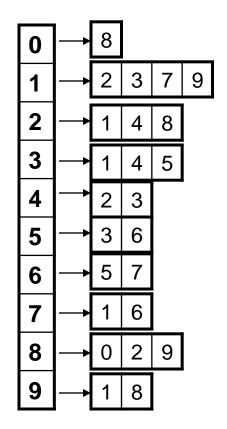
Adjacency Lists

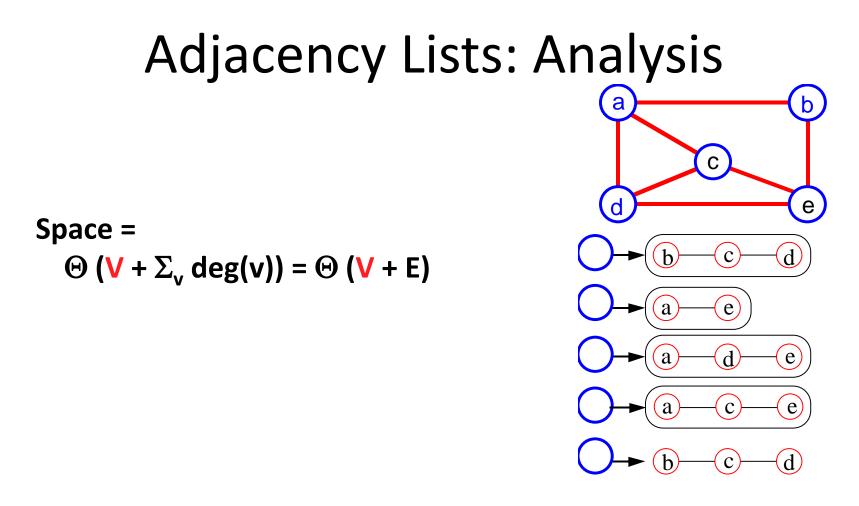
- If the graph is sparse, a better solution is an adjacency list representation.
- For each vertex **v** in the graph, we keep a list of vertices adjacent to **v**.



Adjacency List Example







 Testing whether u is adjacency to v takes time O(deg(v)) or O(deg(u)). Adjacency Lists vs. Adjacency Matrices

- An adjacency list takes $\Theta(V + E)$.
 - If $E = O(v^2)$ (dense graph), both use $\Theta(v^2)$ space.
 - If E = O(v) (sparse graph), adjacency lists are more space efficient.
- Adjacency lists
 - More compact than adjacency matrices if graph has few edges
 - Requires more time to find if an edge exists
- Adjacency matrices
 - Always require $\Theta(V^2)$ space
 - This can waste lots of space if the number of edges is small
 - Can quickly find if an edge exists

(Undirected) Graph ADT

- Vertices and edges
 - are positions
 - store elements
- Define Vertex and Edge interfaces, each extending Position interface

Accessor methods

- endVertices(e): returns an array of the two end vertices of e
- opposite(v, e): returns the vertex opposite of v on e
- areAdjacent(v, w): returns true iff v and w are adjacent
- replace(v, x): replace element at vertex v with x
- replace(e, x): replace element at edge e with x

(Undirected) Graph ADT (2)

• Update methods

- insertVertex(o): inserts a vertex storing element o
- insertEdge(v, w, o): inserts an edge (v, w) storing element o
- removeVertex(v): removes vertex v (and its incident edges)
- removeEdge(e): removes edge e

• Iterator methods

- incidentEdges(v): returns the edges incident to v
- vertices(): returns all vertices in the graph
- edges(): returns all edges in the graph

Homework

• Prove the big-Oh running time of the graph methods shown in the next slide.

Running Time of Graph Methods

 <i>n</i> vertices, <i>m</i> edges no parallel edges no self-loops bounds are "big-Oh" 	Edge List	Adjacency List	Adjacency Matrix	
Space	n + m	n + m	n^2	
incidentEdges(v)	m	deg(v)	n	
areAdjacent (v, w)	m	$\min(\deg(v), \deg(w))$	1	
insertVertex(o)	1	1	n^2	
insertEdge(v, w, o)	1	1	1	
removeVertex(v)	т	deg(v)	n ²	
removeEdge(e)	1	1	1	

Next lectures ...

- Graph traversal
 - Breadth first search (BFS)
 - Applications of BFS
 - Depth first search (DFS)
- Review
- Final exam (Thursday August 8th in CLH E from 14:00 to 17:00.)