
Applications of BFS and DFS

cse2011
section 13.3 of textbook

1

Some Applications of BFS and DFS

• BFS
– To find the shortest path from a vertex s to a vertex v in an

unweighted graph
– To find the length of such a path
– To find out if a graph contains cycles
– To construct a BSF tree/forest from a graph

• DFS
– To find a path from a vertex s to a vertex v.
– To find the length of such a path.
– To construct a DSF tree/forest from a graph.

 2

Testing for Cycles

3

Finding Cycles in Undirected Graphs

• To detect/find cycles in an undirected graph,
we need to classify the edges into 3 categories
during program execution:
– unvisited edge: never visited.
– discovery edge: visited for the very first time.
– cross edge: edge that forms a cycle.

• When the BFS algorithm terminates, the
discovery edges form a spanning tree.

• If there exists a cross edge, the undirected
graph contains a cycle.

4

BFS Algorithm (in textbook)

Breadth-First Search 5

• The algorithm uses a
mechanism for setting and
getting “labels” of vertices and
edges

Algorithm BFS(G, s)
 L0 ← new empty sequence

L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()
 Li +1 ← new empty sequence
 for all v ∈ Li.elements()
 for all e ∈ G.incidentEdges(v)
 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 setLabel(w, VISITED)
 Li +1.insertLast(w)
 else
 setLabel(e, CROSS)
 i ← i +1

Algorithm BFS(G)
 Input graph G
 Output labeling of the edges
 and partition of the
 vertices of G

for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 BFS(G, v)

Example

Breadth-First Search 6

C B

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F

Example (2)

Breadth-First Search 7

C B

A

E

D

L0

L1

F

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Example (3)

Breadth-First Search 8

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

L0

L1

F
L2

Computing Spanning Trees

9

Trees
• Tree: a connected graph without cycles.
• Given a connected graph, remove the cycles ⇒ a tree.
• The paths found by BFS(s) form a rooted tree (called a

spanning tree), with the starting vertex as the root of the tree.

10

BFS tree for vertex s = 2

What would a level-order traversal of the tree tell you?

Computing Spanning Forests

11

Computing a BFS Forest

• A forest is a set of trees.
• A connected graph gives a tree (which is itself a

forest).
• A connected component also gives us a tree.
• A graph with k components gives a forest of k trees.

12

Example

13

D
E

A
C

F
B

G
K

H

L
N

M

O
R

Q
P

s

A graph with 3 components

Example of a Forest

14

D
E

A
C

F
B

G
K

H

L
N

M

O
R

Q
P

s

A forest with 3 trees

We removed the cycles
from the previous graph.

Applications of DFS
• Is there a path from source s to a vertex v?
• Is an undirected graph connected?
• Is a directed graph strongly connected?
• To output the contents (e.g., the vertices) of a

graph
• To find the connected components of a graph
• To find out if a graph contains cycles and report

cycles.
• To construct a DSF tree/forest from a graph

15

Finding Cycles Using DFS

• Similar to using BFS.

• For undirected graphs, classify the edges into 3
categories during program execution: unvisited edge,
discovery edge, and back (cross) edge.
– If there exists a back edge, the undirected graph contains a

cycle.

16

Depth-First Search 17

DFS Algorithm
• The algorithm uses a mechanism

for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
 Input graph G and a start vertex v of G
 Output labeling of the edges of G
 in the connected component of v
 as discovery edges and back edges
 setLabel(v, VISITED)

for all e ∈ G.incidentEdges(v)
 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 DFS(G, w)
 else
 setLabel(e, BACK)

Algorithm DFS(G)
 Input graph G
 Output labeling of the edges of G
 as discovery edges and
 back edges

for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all e ∈ G.edges()
 setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 DFS(G, v)

Depth-First Search 18

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Depth-First Search 19

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

DFS Tree

20

Resulting DFS-tree.
Notice it is much “deeper”
than the BFS tree.

Captures the structure of the
recursive calls:
- when we visit a neighbor w of v, we
add w as child of v
- whenever DFS returns from a vertex
v, we climb up in the tree from v to its
parent

Next lecture …

• Review

• Final exam (Thursday August 8th in CLH E from
14:00 to 17:00.)

21

	Applications of BFS and DFS��cse2011�section 13.3 of textbook
	Some Applications of BFS and DFS
	Testing for Cycles
	Finding Cycles in Undirected Graphs
	BFS Algorithm (in textbook)
	Example
	Example (2)
	Example (3)
	Computing Spanning Trees
	Trees
	Computing Spanning Forests
	Computing a BFS Forest
	Example
	Example of a Forest
	Applications of DFS
	Finding Cycles Using DFS
	DFS Algorithm
	Example
	Example (cont.)
	DFS Tree
	Next lecture …

