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Some Applications of BFS and DFS 

• BFS 
– To find the shortest path from a vertex s to a vertex v in an 

unweighted graph 
– To find the length of such a path 
– To find out if a graph contains cycles 
– To construct a BSF tree/forest from a graph 

• DFS 
– To find a path from a vertex s to a vertex v. 
– To find the length of such a path. 
– To construct a DSF tree/forest from a graph. 
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Testing for Cycles 
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Finding Cycles in Undirected Graphs 

• To detect/find cycles in an undirected graph, 
we need to classify the edges into 3 categories 
during program execution:  
– unvisited edge: never visited.   
– discovery edge: visited for the very first time. 
– cross edge: edge that forms a cycle. 

• When the BFS algorithm terminates, the 
discovery edges form a spanning tree. 

• If there exists a cross edge, the undirected 
graph contains a cycle. 
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BFS Algorithm (in textbook) 

Breadth-First Search 5 

• The algorithm uses a 
mechanism for setting and 
getting “labels” of vertices and 
edges 

Algorithm BFS(G, s) 
 L0 ← new empty sequence 

L0.insertLast(s) 
setLabel(s, VISITED) 
i ← 0  
while  ¬Li.isEmpty() 
 Li +1 ← new empty sequence  
 for all  v ∈ Li.elements()  
  for all  e ∈ G.incidentEdges(v)  
   if  getLabel(e) = UNEXPLORED 
    w ← opposite(v,e) 
    if  getLabel(w) = UNEXPLORED 
     setLabel(e, DISCOVERY) 
     setLabel(w, VISITED) 
     Li +1.insertLast(w) 
    else 
     setLabel(e, CROSS) 
 i ← i +1 

Algorithm BFS(G) 
 Input graph G 
 Output labeling of the edges  
  and partition of the  
  vertices  of G  

for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  BFS(G, v) 



Example 
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Example (2) 
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Example (3) 
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Computing Spanning Trees 
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Trees 
• Tree: a connected graph without cycles. 
• Given a connected graph, remove the cycles ⇒ a tree. 
• The paths found by BFS(s) form a rooted tree (called a 

spanning tree), with the starting vertex as the root of the tree. 
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BFS tree for vertex s = 2 

What would a level-order traversal of the tree tell you? 



Computing Spanning Forests 
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Computing a BFS Forest 

• A forest is a set of trees. 
• A connected graph gives a tree (which is itself a 

forest). 
• A connected component also gives us a tree. 
• A graph with k components gives a forest of k trees. 
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Example 
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A graph with 3 components 



Example of a Forest 
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A forest with 3 trees 

We removed the cycles 
from the previous graph. 



Applications of DFS 
• Is there a path from source s to a vertex v? 
• Is an undirected graph connected? 
• Is a directed graph strongly connected? 
• To output the contents (e.g., the vertices) of a 

graph 
• To find the connected components of a graph 
• To find out if a graph contains cycles and report 

cycles. 
• To construct a DSF tree/forest from a graph 
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Finding Cycles Using DFS 

• Similar to using BFS. 
 

• For undirected graphs, classify the edges into 3 
categories during program execution: unvisited edge, 
discovery edge, and back (cross) edge. 
– If there exists a back edge, the undirected graph contains a 

cycle. 
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DFS Algorithm 
• The algorithm uses a mechanism 

for setting and getting “labels” of 
vertices and edges 

Algorithm DFS(G, v) 
 Input graph G and a start vertex v of G  
 Output labeling of the edges of G  
  in the connected component of v  
  as discovery edges and back edges 
 setLabel(v, VISITED) 

for all  e ∈ G.incidentEdges(v) 
 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
   setLabel(e, DISCOVERY) 
   DFS(G, w) 
  else 
   setLabel(e, BACK) 

Algorithm DFS(G) 
 Input graph G 
 Output labeling of the edges of G  
  as discovery edges and 
  back edges 

for all  u ∈ G.vertices() 
 setLabel(u, UNEXPLORED) 
for all  e ∈ G.edges() 
 setLabel(e, UNEXPLORED) 
for all  v ∈ G.vertices() 
 if  getLabel(v) = UNEXPLORED 
  DFS(G, v) 
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Example 
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Example (cont.) 

D B 

A 

C 

E 

D B 

A 

C 

E 

D B 

A 

C 

E 

D B 

A 

C 

E 



DFS Tree 
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Resulting DFS-tree. 
Notice it is much “deeper” 
than the BFS tree. 

Captures the structure of the 
recursive calls: 
- when we visit a neighbor w of v, we 
add w as child of v 
- whenever DFS returns from a vertex 
v, we climb up in the tree from v to its 
parent 



Next lecture … 

• Review 
 

• Final exam (Thursday August 8th in CLH E from 
14:00 to 17:00. ) 
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