
Final Review

cse2011

1

Algorithm Analysis

• Given an algorithm, compute its running time in
terms of O, Ω, and Θ (if any).
– Usually the big-Oh running time is enough.

• Given f(n) = 5n + 10, show that f(n) is O(n).
– Find c and n0

• Compare the growth rates of 2 functions.
• Order the growth rates of several functions.

– Use L’Hôpital’s rule.

2

Running Times of Loops

Nested for loops:
•If the exact number of iterations of each loop is
known, multiply the numbers of iterations of the loops.

•If the exact number of iterations of some loop is not
known, “open” the loops and count the total number of
iterations.

3

Running Time of Recursive Methods

• Could be just a hidden “for" or “while” loop.
– See “Tail Recursion” slide.
– “Unravel” the hidden loop to count the number of

iterations.

• Logarithmic
– Examples: binary search, exponentiation, GCD

• Solving a recurrence
– Example: merge sort, quick sort

4

Recursion

Know how to write recursive functions/methods:
•Recursive call

– Adjusting recursive parameter(s) for each call

•Base case(s)

1.Use the definition (factorial, tree depth, height)
2.Cut the problem size by half (binary search), or by k
elements at a time (sum, reversing arrays).
3.Divide and conquer (merge sort, quick sort)

5

Sorting Algorithms

• Insertion sort
• Merge sort
• Quick sort
• Lower bound of sorting algorithms

– O(NlogN)

• When to use which sorting algorithm?

6

Arrays and Linked Lists

Arrays
A = B
Cloning arrays
Extendable arrays
Strategies for extending

arrays:
doubling the size
increment by k cells

Linked lists
Singly linked
Doubly linked
Implementation
Running times for

insertion and deletion at
the two ends.

7

Running Times of Array and Linked List
Operations

Operation

Array
unsorted

Array
sorted

DL list
unsorted

DL list
sorted

insert O() O() O() O()

delete O() O() O() O()

search O() O() O() O()

8

Stacks, Queues and Deques

• Operations
• Array implementation
• Linked list implementation
• Running times for each implementation
• Assignment 2 (deques)

9

Trees

Definitions, terminologies
 Traversal algorithms and applications

Preorder
Postorder

Computing depth and height of a tree or node.

10

Binary Trees

• Linked structure implementation
• Array implementation
• Traversal algorithms

– Preorder
– Postorder
– Inorder

• Properties: relationships between n, i, e, h.
• Definitions:

– complete binary tree
– full binary tree

11

12

Linked Structure of Binary Trees
• A node is

represented by an
object storing
– Element
– Parent node
– Left child node
– Right child node

12

B

D A

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅

Array Implementation of Binary Trees

Each node v is stored at index i defined as follows:
• If v is the root, i = 1
• The left child of v is in position 2i
• The right child of v is in position 2i + 1
• The parent of v is in position ???

13

Space Analysis of Array Implementation

• n: number of nodes of binary tree T
• pM: index of the rightmost leaf of the corresponding

full binary tree (or size of the full tree)
• N: size of the array needed for storing T; N = pM + 1
Best-case scenario: balanced, full binary tree pM = n
Worst case scenario: unbalanced tree
• Height h = n – 1
• Size of the corresponding full tree:
 pM = 2h+1 – 1= 2n – 1
• N = 2n
Space usage: O(2n)

14

Arrays versus Linked Structure

Linked lists
• Slower operations due to

pointer manipulations
• Use less space if the tree is

unbalanced
• Rotation (restructuring)

code is simple

Arrays
• Faster operations
• Use less space if the tree is

balanced (no pointers)
• Rotation (restructuring)

code is complex

15

Binary Search Trees and AVL Trees

BST
Properties
Searching
Insertion

Distinct keys
Duplicate keys

Deletion (3 cases)
Running times

AVL trees
•Properties
•Searching
•Insertion: as BST plus

– restructuring (once)

•Deletion: as BST plus
– restructuring (maybe

more than once)

•Running times

16

BSTs versus AVL Trees

Operation BSTs AVL Trees

search

insert

delete

findMin

findMax

17

Implementations of Priority Queues

• Unsorted linked list
– insertion O()
– deleteMin O()

• Sorted linked list
– insertion O()
– deleteMin O()

• AVL trees
– insertion O()
– deleteMin O()

• Unsorted array
– insertion O()
– deleteMin O()

• Sorted array
– insertion O()
– deleteMin O()

• Heaps
– insertion O()
– deleteMin O()

18

Heaps

• Properties
• Array implementation
• Insert

– upheap percolation

• Delete
– downheap percolation

• Running time

• Other operations:
– decreaseKey(i, k)
– increaseKey(i, k)
– delete(i)

19

Heap Sort

Using a temp heap T

for (i = 0; i++; i < n)
 T.insert(A[i]);
for (i = 0; i++; i < n)
 A[i] = T.deleteMin();

In-place sorting

run buildHeap on A;
repeat
 deleteMax;
 copyMax;
until the heap is empty;

Hashing

• Table size (a prime
number)

• Hash functions
– For integer keys

• division (modular)
• Multiple, Add and Divide

(MAD)

– For strings: polynomial
accumulation

• z = 33, 37, 39, 41

Collision handling
•Separate chaining
•Probing (open addressing)

– Linear probing
– Quadratic probing
– Double hashing

•Probing: 3 types of cells (null,
in use, available)

21

Comparing Collision Handling Schemes

• Separate chaining:
 – simple implementation
 – faster than open

addressing in general
 – using more memory

• Open addressing:
 – using less memory
 – slower than chaining in

general
 – more complex removals

• Linear probing: items are
clustered into contiguous
runs (primary clustering).

• Quadratic probing:
 secondary clustering.

• Double hashing: distributes

keys more uniformly than
linear probing does.

22

Graphs

• Definitions (terminology)
• Properties (with respect to V and E)
• Data structures

– Adjacency matrix
– Adjacency lists

• Running time of graph methods
• Graph traversal algorithms:

– BFS
– DFS

23

Properties of Undirected Graphs
Notation

 V number of vertices
 E number of edges
deg(v) degree of vertex v

Property 1
Σv deg(v) = 2E
Proof: each edge is

counted twice
Property 2

In an undirected graph
with no loops

 E ≤ V (V − 1)/2

Proof: each vertex has
degree at most (V − 1)

What is the bound for a
directed graph?

24

Example
V = 4
E = 6
deg(v) = 3

Applications of DFS and BFS

25

C B

A

E

D

L0

L1

F
L2

C B

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning tree/forest,
connected components,
paths, cycles

√ √

Shortest paths √

Final Exam

• Date: Thursday August 8th
Time: 14:00-17:00 (3 hours)

• Materials
– Lectures notes from the beginning to the end.
– Corresponding sections in the textbook.

26

Exam Rules
• This is a closed-book exam. No books, notes or

calculators are allowed. You will be given blank
paper for scrap work.

• Bring a photo ID, pens, and pencils. You may use
pencils with darkness of at least HB; 2B is
preferred.

• You may leave the classroom if you hand in your

exam booklet 15 minutes or more before the
exam ends.

27

Exam Rules (2)

• Programming problems will be marked based
on both correctness and efficiency.

• You may use either Java or pseudo-codes if
you are asked to write the code.

28

Office Hours before Exam

• Wednesday Aug 7th, 14:00-16:00.
• Email, anytime!

29

	Final Review��cse2011
	Algorithm Analysis
	Running Times of Loops
	Running Time of Recursive Methods
	Recursion
	Sorting Algorithms
	Arrays and Linked Lists
	Running Times of Array and Linked List Operations
	Stacks, Queues and Deques
	Trees
	Binary Trees
	Linked Structure of Binary Trees
	Array Implementation of Binary Trees
	Space Analysis of Array Implementation
	Arrays versus Linked Structure
	Binary Search Trees and AVL Trees
	BSTs versus AVL Trees
	Implementations of Priority Queues
	Heaps
	Heap Sort
	Hashing
	Comparing Collision Handling Schemes
	Graphs
	Properties of Undirected Graphs
	Applications of DFS and BFS
	Final Exam
	Exam Rules
	Exam Rules (2)
	Office Hours before Exam

