
Nothing written on the back of this page will be marked.

1 - Arrays and Linked Lists (5 pts)

Consider a set of n distinct integers stored in either of the following data structures:
1. an array of size N (N > n)
2. a singly linked list whose front is kept track by a pointer "head" as shown below

Give the running time of each of the following methods (operations) in terms of the parameter n and
the big-Oh notation using the above two data structures. Efficiency is important in all operations.

• insertion(k): insert a non-duplicate integer k into the data structure.
• deletion(k): remove integer k from the data structure. Return false if k is not found in the data

structure. Return true if the deletion operation is successful.
• search(k): return true if integer k is in the data structure. Return false if k is not found.
• find_min(): return the smallest integer stored in the data structure.
• find_max(): return the largest integer stored in the data structure.

Fill in the following table. NO explanation is required. A sorted array or linked list is always kept
sorted in increasing order. We also maintain a variable (attribute) size that records the current number
of elements in the array or linked list.

Operation

insertion

deletion

search

find_min

find_max

Sorted array Unsorted array Sorted linked list Unsorted linked list

April 17,2013 page 3 of 19

Nothing written on the back of this page will be marked.

2 - Sorting Algorithms (4 pts)

Fill in the following table with the appropriate running time of each sorting algorithm in each case
using the big-Oh notation. NO explanation is required.

Note: You may assume that the input is randomly mixed and has no special property in an average
case. The worst-case running time usually results from the input having a special property (e.g.,
almost sorted).

Algorithm Average-case running time Worst-case running time

Insertion Sort

Quick Sort

Merge Sort

In-place Heap Sort

April 17,2013 page 4 of 19

Nothing written on the back of this page will be marked.

3 - Binary Tree Traversal (3 pts)
Consider a binary tree T having nodes with keys A, B, C, D, E, F, G, H and I.
Apostorder traversal visits the nodes in the order F I C B D H G A E
An inorder traversal visits the nodes in the order F D B C I E H A G

(a) Draw the binary tree T.

(b) Briefly explain the strategy you used to construct the tree (for partial marks in case your answer in
(a) is wrong).

April 17, 2013 page 5 of 19

Nothing written on the back of this page will be marked.

4 - Removal Operation of Binary Search Trees (2 pts)

(a) Consider the following BST with integer keys. Redraw the tree as it would look if the node with
key 90 were removed. (Note: The external dummy nodes are not shown in the diagram.)

(b) Consider the following BST with integer keys. Redraw the tree as it would look if the node with
key 78 were removed, (Note: The external dummy nodes are not shown in the diagram.)

44 }

1"

v y

48 (62

(54 ,
V J

April 17,2013 page 6 of 19

Nothing written on the back of this page will be marked.

5 - Binary Search Tree Algorithms (3 pts)
Assume that you have a binary search tree T containing no duplicate integer keys and having at least 2
nodes. Write a (non-recursive) method named findSecondSmallest() that returns the second smallest
element in the BST. For example, if a BST contains the following integers {10, 25, 35, 100, 200, 350}
then the method returns integer 25.

(a) Explain briefly how your method would work. Diagrams of different cases might be useful here.
(Write your code on the next page.)

5(b) Write the method on the next page. We implement external dummy nodes in this problem. Use
class BinarySearchTree given on page 19 in your implementation.
Note: Do NOT traverse the whole tree to find the second smallest element (i.e., the exhaustive
approach). Given a balanced tree, your algorithm must run in O(log/i) time. No point will be given for
the exhaustive approach.

April 17, 2013 page 7 of 19

i Nothing written on the back of this page will be marked.

5(b) Provide comments in your code to facilitate code reading and understanding.

public int findSecondSmallest()

April 17,2013 page 8 of 19

'
Nothing written on the back of this page will be marked.

6(a) - AVL Trees - Insertion (3 pts)
Consider the following AVL tree with integer keys. Redraw the tree as it would look if a node with
key 42 and then another node with key 32 were inserted into the tree.
Note: Draw the tree after each insertion to get points for each operation. If tree restructuring is needed,
show the involved nodes z, y, x (or the 7 components if using the cut-and-link method) for partial
marks in case the final answer is wrong. The external dummy nodes are not shown in the diagram.

April 17, 2013 page 9 of 19

Nothing written on the back of this page will be marked.

6(b) - AVL Trees - Removal (3 pts)
Consider the following AVL tree with integer keys. Redraw the tree as it would look if the node with
key 25 were removed.
Note: If tree restructuring is needed, show the involved nodes z, y, x (or the 7 components if using the
cut-and-link method) for partial marks in case the final answer is wrong. The external dummy nodes
are not shown in the diagram.

April 17,2013 page 10 of 19

Nothing written on the back of this page will be marked.

7(a) - Hashing - Quadratic Probing (3 pts)

Consider a hash table of length 7 and quadratic probing. The hash table stores integer keys. The
hash function is given by h(k) — k mod 7.

Below is the table as it looks after the commands insert(7), insert(52), and insert(3Q).

0 1 2 3 4 5 6

7 30 52

Draw the table as it would look after each of the following insert commands. (Note that the insert
operations are cumulative; the items inserted into the table so far are still there, so show them too.)

insert(\6)

0 1 2 3 4 5 6

7 30 52

7 30 52

insert(45)

0

7 30 52

April 17,2013 page 11 of 19

i Nothing written on the back of this page will be marked.

7(b) - Double Hashing (3 pts)

Consider a hash table of length 7 and double hashing. The hash table stores integer keys. The
primary hash function is given by h(k) = k mod 7.
The secondary hash function is given by d(k) = 5 - k mod 5.

Below is the table as it looks after the commands insert(59), insert(l4), and insert(37).

0 1 2 3 4 5

14 37 59

Draw the table as it would look after each of the following insert commands. (Note that the insert
operations are cumulative; the items inserted into the table so far are still there, so show them too.)

insert(2$)

0 1 2 3 4 5 6

14 37 59

insert(44)

0 1

14 37 59

14 37 59

April 17,2013 page 12 of 19

Nothing written on the back of this page will be marked.

8 (a) - Heap Operations - Insertion (2 pts)

The following array contains a min heap with integer keys. Nothing is stored at index 0, so we mark it
with an X.

0 1 2 4 7 10 11 12 13 14 15

X 14 15 18 25 19 27 20 26 35 24 22

Give the final version of the array as it would look like after imert(16) followed by insert(10).

10 11 12 13 14 15

X

In the space below, draw the heap in the form of a binary tree after each insertion for partial marks in
case your final answer above is wrong.

April 17,2013 page 13 of 19

Nothing written on the back of this page will be marked.

8(b) - Heaps - deleteMin() (2 pts)

The following array contains a min heap with integer keys. Nothing is stored at index 0, so we mark it
with an X.

0 1 4 5 7 10 11 12 13 14 15

Yyv 14 15 18 25 19

~ • .

27 20 26 35 24 22 28

Give the final version of the array as it would look like after two (2) deleteMin() operations.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

In the space below, draw the heap in the form of a binary tree after each deleteMin() operation for
partial marks in case your final answer above is wrong.

April 17, 2013 page 14 of 19

B Nothing written on the back of this page will be marked.

r 8(b) - Heap Construction (2 pts)
Consider a non-heap binary tree with integer keys stored in the following array. Nothing is stored at
index 0, so we mark it with an X.

10 11 12 13 14 15

X 20 17 18 "> CJ3 15 21 23 26 25 14 22 16 19 37 30

We call method buildHeap() to construct a min heap from the above tree using a bottom-up
construction with log n phases. The final heap is stored in the same array. (Note: buildHeap() is used
in the in-place heap sort algorithm, but we are not interested in sorting the above array. We simply
want to build a heap from the binary tree represented by the above array.)

(i) Show the heap in the form of a binary tree after each phase.

(ii) Show the content of the array after buildHeap() terminates.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

X

April! 7, 2013 page 15 of 19

Nothing written on the back of this page will be marked.

9 - Heap Properties (4 pts)
Consider a min heap having unique keys and stored in array A. There are 10,000 entries, stored in
A[l] ... A[10000] . Circle TRUE or FALES for each of the following statements and give a brief
explanation or proof. No point is given without an explanation/proof.

(i)A[4000]>A[3999]

Explanation/proof:

TRUE FALSE

(ii)A[4000]>A[125]

Explanation/proof:

TRUE FALSE

(iii) In a postorder traversal of the heap (as a binary tree),
the last node visited contains the smallest value.

Explanation/proof:

TRUE FALSE

(iv) In a preorder traversal of the heap (as a binary tree),
the last node visited contains the largest value.

Explanation/proof:

TRUE FALSE

April 17, 2013 page 16 of 19

i Nothing written on the back of this page will be marked.

10 - Graph Traversal (4.5 pts)
Consider the following graphs.

(a) Given the undirected graph on the left, list the vertices in the order they might be encountered in a
depth first search (DPS) starting at vertex A.

(b) Given the undirected graph on the left, list the vertices in the order they might be encountered in a
breadth first search (BFS) starting at vertex A.

(c) Given the directed acyclic graph on the right, list the vertices in the order they might be
encountered in a topological sort starting at vertex N.

April 17,2013 page 17 of 19

mehdi
Rectangle

Nothing written on the back of this page will be marked.

11 - Graph Algorithms - Breadth First Search (2.5 pts)
Consider the breadth first search algorithm shown below. Given an undirected graph G having V
vertices and E edges, what is the running time of the BFSearch() algorithm in terms of Fand E and
the big-Oh notation if we use an ADJACENCY MATRIX of size Fx Kto represent the graph?
Show detailed calculations and explanations.
Note: The graph G may or may not be connected.

BFSearc/?(G) {
i = 1; /* i represents component number */
for every vertex v

flag[v] = false;
for every vertex v

if (flag[v]== false){
print ("Component" + i++);
BFS(v);

BFS(s) {

3. Q = empty queue;
4. fla$[$] := true;
5. enqueue(Q-8)t
6. while Q is not empty

7. do w ;— ctegyeue(Q); output (v);
8. for each w adjacent to v
9. do if fltiy[w] = false
10. then fl&g[w] := true;

}

April 17,2013 page 18 of 19

public class BinarysearchTree

/* Basic node stored in binary search trees */
private static class BinaryNode

/* Constructors */
BinaryNodeC int theElement)

thisC theElement, null, null, null);

BinaryNodeC int theElement, BinaryNode It, BinaryNode rt, BinaryNode pt)

element = theElement;
left = It;
right = rt;
parent = pt;

int element; // The data in the node
BinaryNode left; // Left child
BinaryNode right; // Right child
BinaryNode parent; // Parent

/** The tree root */
private BinaryNode root;

* Construct the tree.
*/

public BinarySearchTree()

root = null;

* insert an integer x into the tree

public void insertC int x)

// This method is used to build the binary search tree.
// we are not concerned with the implmentation of method insertC).

/**
* Return true if node p is an external Cdummy) node; return false otherwise.
* /

&r'i\Idt& boolean isExternalC BinaryNode p)
' 1

return ((p.left == null) && (p.right == null));

/st *

* Return the second smallest integer in the BST.
* /

public int findsecondsmallest()

// WRITE YOUR CODE IN THE EXAM BOOKLET, NOT HERE.

page 19

