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• This is a closed-book test. No books, no papers, no calculators are allowed. 

• Use the back of any page for scrap work. 

• Nothing written on the back of the pages will be marked. 

• Extra space for answers can be found on the last page. However, the provided space is 

generally sufficient. 

• Programming problems will be marked based on both correctness and efficiency. Both 

Java code and pseudo-code are accepted.  

• Do not leave during the last 15 minutes; remain seated until all tests have been collected. 

Question Value  
1 4  
2 4  
3 3  
4 6  
5 4  
6 6  

Total 27  
 

  



1- Growth Rate (4 pts) 

 
 
Part I: For each of the functions  f(N) given below, indicate the tightest bound possible (Big-O). 
 
a) f(N) = (N + N + N + N)2       O(N2)  
 

 0.5 pt 

 
b) f(N) = (N/5) log (N4) + 66N      O(N log N)  
  

0.5 pt 

 
c) f(N) = N log (1003)  + √𝑁       O(N)   
 

0.5 pt 

 
d) f(N) = N.(N2logN + N2)       O(N3 log N)  
 

0.5 pt 

 
 
 
Part II: Do the following two functions grow at the same rate? If not, which function grows 
faster? Explain your answer (no mark will be given without an explanation). 
 
2.0 pt 
 
 
N3.3    N3.(log N)17 
 
f(N) = N3.3     g(N) = N3.(log N)17 

f(N) grows faster than g(N). 
 

if we can prove that    , then f(N) grows faster than g(N). 

The only way to prove it is using the L' Hôpital's rule and the following formula 
three time. In other words, derivative of the functions should be applied three 
time. 

  =  

∞=
∞→ )(

)(lim
Ng
Nf

n

)(
)(lim

Ng
Nf

n ∞→ )(
)(lim

Ng
Nf

n ′
′

∞→



2- Running Time Calculations (4 pts) 

Describe the tightest worst case running time of the following java style pseudocode functions 
in Big-Oh notation in terms of the variable n. No proof/description is required. 
 
I.  1.0 pt 
void test1(int n, int x, int y) {       Runtime: 
 for (int i = 0; i < n; ++i) { 
  if (x > y) { 
   for (int j = 0; j < n; ++j) 

    System.out.println("j = " + j); O(n3) 
 
   for (int k = 0; k < n * n; ++k) 
    System.out.println("k = " + k); 
  } else 
   System.out.println("i = " + i); 
 } 
} 
 
 
II. 1.0 pt 
void test2(int n, int m) {        Runtime: 
 if (m > n)  
  return; 

 System.out.println("m = " + m);    O(n) 
 test2(n, m+2); 
} 
 
 
III. 1.0 pt 
void test3(int n) {          Runtime: 
 if (n <= 0)  
  return; 

 System.out.println("n = " + n);    O(log n) 
 test3(n/2); 
} 
 
 
IV. 1.0 pt 
void test4(int n) {          Runtime: 
 for (int i = 0; i < n; ++i) { 
  j = 0; 
  while (j < n) { 

   System.out.println("j = " + j);  O(n2) 
   j++; 
  } 
 } 
} 
  



3- Solving a Recurrence Relation (3 pts) 3.0 pt 

Solve the following recurrence by finding a Big-Oh bound for T(N), given that T(1) = 1. The 
calculation must be shown for full marks. 
 
T(N) = T(N-2) + 3.N + 4 
 

T(N) = T(N-2) + O(N) 

T(N-2) = T(N-4) + O(N) 

T(N-4) = T(N-6) + O(N) 

. 

. 

T(1) 

we have N/2 levels until we hit T(1). In each level, we do O(N) work. Therefore, 
total run time is N/2.O(N) which is O(N2).  

--- 

If someone provides more details, like the sum equation, it is even better but 
something like the above argument is enough. 

  



4- Recursion (6 pts) 
 
Part I   
Write a recursive method called precur() that receives an integer n and returns 2n. It should have 
linear

 

 run time in terms of n. Calculate the run time in terms of a recursive equation and drive 
the Big-Oh notation.  

 
Algorithm 2.0 pt 
 
in precure(int n){ 
 
if(n==1) 
 return 2; 
else 
 return precure(n-1)*2;  // This is also correct: return precure(┌n/2┐)* precure(└n/2┘) 
      //┌ ┐and └ ┘ are ceiling and floor funcitons 
} 
 
----------------------------------------------------------------------------------- 
 
Runtime 1.0 pt 
 
Runtime: T(n) = T(n-1) + O(1). 
total runtime is O(N). 
  



Part II 
Write a recursive method called precur() that receives an integer n and returns 2n. It should have 
logarithmic

 

 run time in terms of n. Calculate the run time in terms of a recursive equation and 
drive the Big-Oh notation.  

Algorithm 2.0 pt 
 
in precure(int n){ 
 
if(n==1){ 
 return 2; 
} 
else{ 
 if(n is EVEN) { 
  int temp = precure(n/2);  // it is the floor 
  return temp*temp; 
 }else{ 
  int temp = precure(n/2);  //it is the floor 
  return temp*temp*2; 
 { 
} 
} 
 
------------------------------------------------------------------------------------------ 
 
Runtime 1.0 pt 
 
Runtime: T(n) = T(n/2) + O(1). 
total runtime is O(log N). 
----- 

Please note, any other solutions, like precure(n/2)* precure(n/2) will get the mark of ZERO 
because it is not logarithmic;   

  



5- Trees (4 pts) 
 
Part I. 

What is the minimum and maximum number of nodes at depth d in a proper

Minimum =  2 (if height ≥ 1, otherwise it is 1) 1.0 pt  Maximum = 

 binary tree ? Be 
sure to list the nodes at depth d. Do not include nodes at depth d-1 or d+1 or other depths.  

2d

 
  1.0 pt 

Part II.  
Give traversals of the tree shown below: 
 
Preorder: A B D H I E J C F G K 0.5 pt 
 
Postorder: H I D J E B F K G C A 0.5 pt 
 
Inorder: H D I B E J A F C G K 0.5 pt 
 

Part III. 

What is the height of the tree shown below:   3  

 

 0.5 pt 

 

 

  



6- Stack and Deque (6 pts) 
Suppose a linked list is implemented using only the following methods: 
insertBeginning(E e)    inserts e at the beginning of the list 
remove(Position<E> p)    removes p and returns the respective element 
returnFirst()     returns the first Position 
returnLast()     returns the last Position 
size()      returns the size of the sequence 
 
Part I: Implement the following methods of the Stack ADT using only the above methods: 
push(), pop(), top() 
 
 
 
pop() = remove(returnFirst()) 0.75 pt 
 
top() = returnFirst()  0.5 pt 
 
push(p) = insertBeginning (p) 0.5 pt  
 
 
  



Part II: Implement the following methods of the Deque ADT using only the above methods: 
addFirst(E e), removeFirst(), addLast(E e), removeLast() 
 
 
 
addFirst(p) = insertBeginning(p) 0.75 pt 
 
------------------------------------------------------------------------------- 
 
removeFirst() = remove(returnFirst())  0.75 pt 
 
------------------------------------------------------------------------------- 
 
addLast(p) = 2.0 pt 
  {    
   insertBeginning(p)  
   for (int i=1; i<size(); i++)  
    insertBeginning(remove(returnLast()));  
  }  
 
------------------------------------------------------------------------------- 
 
removeLast() = remove(returnLast())  0.75 pt 
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