

 MIDTERM SAMPLE TEST

CSE 2011 – Fundamentals of Data Structures

Summer 2013

1- Growth Rate

Order the following running time θ bounds by asymptotic growth rate in non-descending order.
Indicate which functions grow at the same rate, if any. Explanations are NOT required.

N log(10N), N!, 10 / logN, 100N, N log2N , 5 / N

2- Running Time Calculations

Describe the worst case running time of the following java style pseudocode functions in Big-Oh
notation in terms of the variable n. No proof/description is required.

I.
public static int myFunction1 (int n) Runtime:
{
 int x = 0;
 for (int i = 0; i < n * n; i = i + 2)
 x++
 return x;
}

II.
public static int myFunction2 (int n) Runtime:
{
 int x = 0;
 for (int i = 1; i < n * n; i = i * 2)
 x++
 return x;
}

III.
public static int myFunction3 (int n) Runtime:
{
 int x = 0;
 for (int i = 1; i <= n * n * n; i++)
 for (int j = 1; j <= n; j = j * 2)
 x++
 return x;
}

3- Solving a Recurrence Relation

Solve the following recurrence by finding a Big-Oh bound for T(N), given that T(1) = 1. The
calculation must be shown for full marks.

T(N) = T(N/2) + 10

4- Recursion

Write a recursive method that finds the minimum value in an array A of int values without using
any loops.

5- Trees

Part I.

What is the height and the depth of the tree shown below:

Height = Depth =

Part II.
Give the Preorder traversals of the tree shown below:

6- Stacks and Queues

Describe the contents of stack s after the method convert executes. That is, describe the contents
in a general manner based on what is in s before the code executes.

public void convert(Stack<Object> s) {
 ArrayList<Object> list = new ArrayList<Object>();
 while (s.size() > 0) {
 list.add(s.pop());
 }
 for (Object o : list) {
 s.push(o);
 }
}

What happens if a queue is used instead of a stack in the code above, e.g.,

public void convert(Queue<Object> q) {
 ArrayList<Object> list = new ArrayList<Object>();
 while (q.size() > 0) {
 list.add(q.dequeue());
 }
 for (Object o : list) {
 q.enqueue(o);
 }
}

