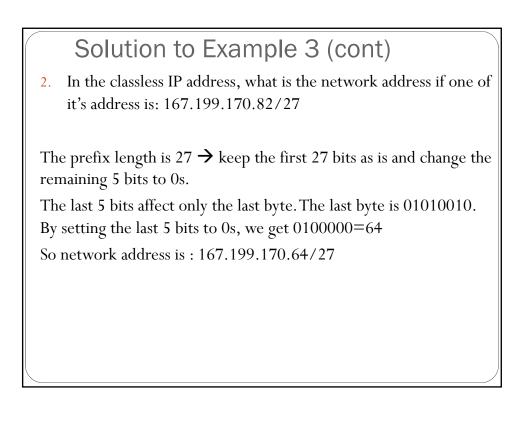

Example 2 (P11)

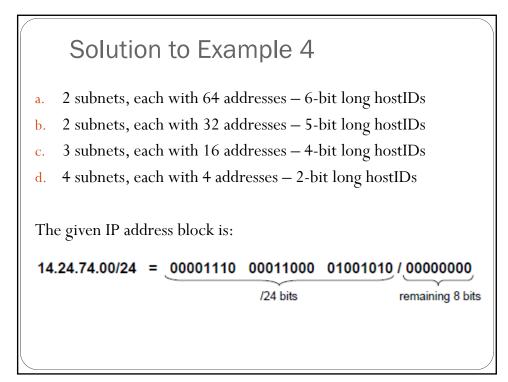
Consider a datagram network using 8-bit host address. Suppose a router uses longest prefix matching and has the following forwarding table:

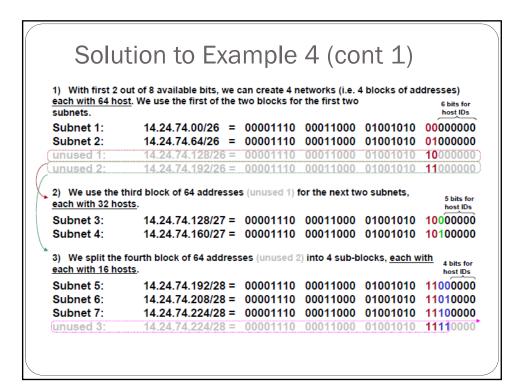

Prefix Match	Interface	
00	0	
010	1	
011	2	
10	2	
11	3	

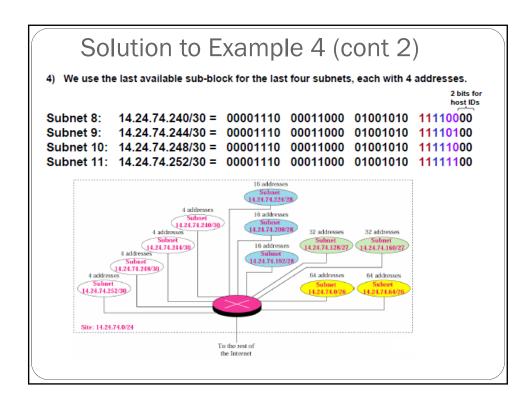
For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

e 2	
Link Interface 0	
1	
2	
2	
3	
54 32 2 ⁶ =32+64 =96 54	
	Link Interface 0 1 2 2 3 54 32 $2^6 = 32 + 64 = 96$

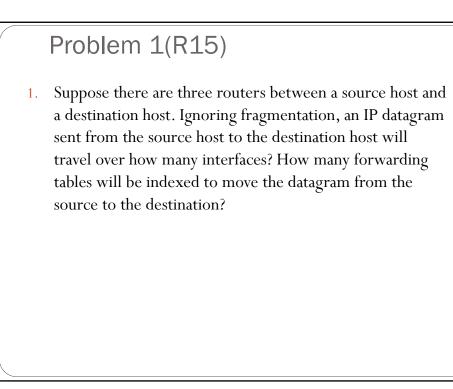
Soll	JTIC	on to E	zxam	iple 3			
(a) 00000	0001	0000101	1 0000	1011 000	01011		
he leading	g bit i	is 0, Clas	s A				
(b) 227.1	,						
(-)							
			1 C 11	hater an '	111 to 12	0 Class	D
he first by	te is	227, whi	ch falls	Detween 4	22 T 10 23	9, Class	D
he first by			ch falls	Detween 2	224 10 23	9, Class	D
he first by (c) 14.23			ch falls	Detween 2	224 10 23	9, Class	D
(c) 14.23	8.120).8					D
5	8.120).8					D
(c) 14.23 he first by	3.12(te is).8					
(c) 14.23 he first by	3.12(te is _{Leading}).8 14, whicl Size of <i>network</i>	h falls b Size of <i>rest</i>	etween 0	to 127, C	Class A Start address	
(c) 14.23 he first by Class	3.12(te is Leading bits).8 14, which Size of network number bit field	h falls be Size of <i>rest</i> bit field	etween 0 Number of networks	to 127, C	Class A Start address	End address
(c) 14.23 he first by Class Class A	3.120 te is Leading bits 0).8 14, which Size of network number bit field 8	h falls b Size of <i>rest</i> bit field 24	Number of networks 128 (2 ⁷)	to 127, C Addresses per network 16,777,216 (2 ²⁴)	Class A Start address 0.0.0.0	End address 127.255.255.25
(c) 14.23 he first by Class Class A Class B	B.120 te is Leading bits 0 10).8 14, which Size of network number bit field 8 16	h falls be Size of rest bit field 24 16	Number of networks 128 (2 ⁷) 16,384 (2 ¹⁴)	to 127, C Addresses per network 16,777,216 (2 ²⁴) 65,536 (2 ¹⁶)	Start address 0.0.0.0 128.0.0	End address 127 255 255 25 191 255 255 25




Example 4


An organization is granted a block of addresses with the beginning address 14.14.74.0/24. There are 256 addresses in this block. The organization needs to have 11 subnets as shown below:


- a. 2 subnets, each with 64 addresses
- b. 2 subnets, each with 32 addresses
- c. 3 subnets, each with 16 addresses
- d. 4 subnets, each with 4 addresses


Design the subnets. (To simplify your work, assume all 0-s and all 1-s subnet ID are allowed)

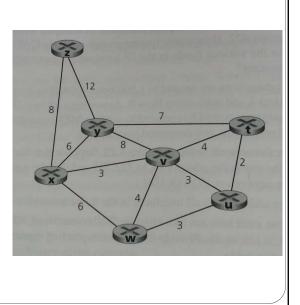
Problem 2 (R17)

Suppose Host A sends Host B a TCP segment encapsulated in an IP datagram. When Host B receives the datagram, how does the network layer in Host B know it should pass the segment (that is, the payload of the datagram) to TCP rather than to UDP or to something else?

Problem 3 (P13)

Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is required to support at least 60 interfaces. Subnet 2 is to support at least 90 interfaces, and Subnet 3 is to support to at least 12 interfaces. Provide three network addresses (of the form a.b.c.d/x) that satisfy these constraints.

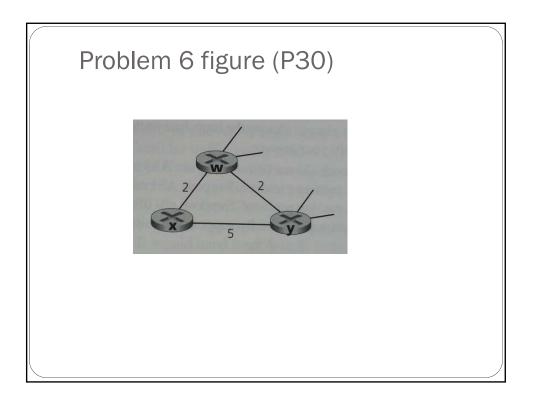
Problem 4 (P18)


Use the whois service at the American Registry for Internet Numbers (<u>http://www.arin.net/whois</u>) to determine the IP address blocks for three universities. Can the whois services be used to determine with certainty the geographical location of a specific IP address? Use <u>www.maxmind.com</u> to determine the location of the Web servers at each of these universities.

3 universities:

- 1. Polytechnic Institute of New York University
- 2. Stanford University
- 3. University of Washington

Problem 5 (P26)


Consider the following network. With the indicated link costs, use Dijkstra's shortest-path algorithm to compute the shortest path from x to all network nodes. Show how the algorithm works by listing each steps in a table.

Problem 6 (P30)

Consider the network fragment shown on next page, x has only two attached neighbors, w and y. w has a minimum-cost path to destination u (not shown) of 5, and y has a minimumcost path to u of 6. The complete paths from w and y to u are not shown. All link costs in the network have strictly positive values.

- a. Give x's distance vector for destinations w, y, and u.
- b. Give a link-cost change for either c(x,w) or c(x,y) such that x will inform its neighbors of a new minimum-cost path to u as a result of executing the distance vector algorithm.

