CSE 3214: Computer Network
Protocols and Applications

—Application Layer

Dr. Peter Lian, Professor
Department of Computer Science and Engineering
York University
Email: peterlian@cse.yorku.ca
Office: 1012C Lassonde Building

Course website:
http://wiki.cse.yorku.ca/course_archive/2012-
13/W/3214

Chapter 2: outline

2.1 principles of network applications
2.2 Web and HTTP

2.3 FTP

2.4 electronic mail

= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-2

Chapter 2: application layer

our goals:
« conceptual,

implementation aspects
of network application
protocols

= transport-layer
service models

= client-server
paradigm

" peer-to-peer
paradigm

+ learn about protocols by

examining popular
application-level
protocols

= HTTP

= FTP

= SMTP/POP3 / IMAP
= DNS

+ creating network

applications
= socket API

Application Layer 2-3

Some network apps

2
o3

2
o3

2
o3

2
o3

2
o3

2
o3

2
o3

e-mail

web

text messaging

remote login

P2P file sharing

multi-user network games

streaming stored video
(YouTube, Hulu, Netflix)

2
o3

2
o3

2
o3

2
o3

2
o3

2
o3

voice over IP (e.g., Skype)

real-time video
conferencing

social networking
search

Application Layer 2-4

transport
network
data link
physical

Creating a network app ‘

write programs that:
« run on (different) end systems -
« communicate over network é

+ e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

+ network-core devices do not
run user applications

+ applications on end systems
allows for rapid app
development, propagation

Application Layer 2-5

Application architectures

possible structure of applications:
+ client-server
« peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

server:

+ always-on host

+ permanent IP address
+ data centers for scaling

clients:
% communicate with server

+ may be intermittently
connected

+ may have dynamic IP
addresses

+ do not communicate directly
with each other

Application Layer 2-7

P2P architecturg

% ho always-on server

+ arbitrary end systems
directly communicate

+ peers request service from
other peers, provide service
in return to other peers

= self scalability — new
peers bring new service
capacity, as well as new
service demands

« peers are intermittently
connected and change IP
addresses

= complex management

Tu ~ peer-peer

Application Layer 2-8

Processes communicating

process: program running - clients, servers

within a host

« within same host, two
processes communicate
using inter-process

communication (defined by
0OS)

client process: process that

initiates communication

server process: process that

waits to be contacted

+ processes in different hosts
communicate by exchanging «

aside: applications with P2P

messages architectures have client
processes & server
processes
Application Layer 2-9

« process sends/receives messages to/from its socket

+ socket analogous to door

= sending process shoves message out door

= sending process relies on transport infrastructure on
other side of door to deliver message to socket at

receiving process

application

—

application

ket
/ soere \ __;ggtzjoe”veglobger

=

controlled
by OS

f ‘{ Internet

e

Application Layer 2-10

Addressing processes

to receive messages,
process must have identifier

host device has unique 32-
bit IP address

Q: does IP address of host
on which process runs
suffice for identifying the
process?
= A: no, many processes
can be running on same
host

+ identifier includes both IP

address and port numbers
associated with process on
host.

« example port numbers:

= HTTP server: 80
= mail server: 25

« to send HTTP message to

gaia.cs.umass.edu web
server:
= [P address: 128.119.245.12
= port number: 80

« more shortly...

Application Layer 2-11

App-layer protocol defines

types of messages
exchanged,

* e.g, request, response
message syntax:

= what fields in messages
& how fields are
delineated

message semantics

* meaning of information
in fields
rules for when and how

processes send & respond
to messages

open protocols:

+ defined in RFCs

+ allows for interoperability
+ e.g, HTTP, SMTP
proprietary protocols:

+ e.g., Skype

Application Layer 2-12

What transport service does an app need!?

data integrity

+ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

+ other apps (e.g., audio) can
tolerate some loss

timing
« some apps (e.g.,

Internet

telephony, interactive
games) require low delay

to be “effective”

throughput

< some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

+ other apps (“elastic apps”)
make use of whatever
throughput they get

security

< encryption, data integrity,

Application Layer 2-13

Transport service requirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail noloss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps yes, 100’ s
video:10kbps-5Mbps msec

stored audio/video

loss-tolerant

same as above

interactive games loss-tolerant few kbps up yes, few secs
text messaging no loss elastic yes, 100’ s
msec
yes and no

Application Layer 2-14

Internet transport protocols services

TCP service: UDP service:
+ reliable transport between + unreliable data transfer
sending and receiving between sending and

process

+ flow control: sender won’ t
overwhelm receiver

- congestion control: throttle
sender when network

receiving process

- does not provide:
reliability, flow control,
congestion control,

overloaded timing, throughpyt

- does not provide: timing, guarantee, security,
minimum throughput orconnection setup,
guarantee, security

+ connection-oriented: setup Q: why bother? Why is
required between client and there a2 UDP?

Server processes

Application Layer 2-15

Internet apps: application, transport protocols

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP

streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) TCP or UDP

Application Layer 2-16

Securing TCP

TCP & UDP SSL is at app layer
+ NO encryption « Apps use SSL libraries,
+ cleartext passwds sent ~ Which “talk” to TCP
into socket traverse SSL socket API
Internet in cleartext .. cleartext passwds sent
SSL into socket traverse
+ provides encrypted Internet encrypted

TCP connection
+ data integrity
+ end-point
authentication

Application Layer 2-17

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP
23 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-18

Web and HTTP

First, a review...

« web page consists of objects
+ object can be HTML file, JPEG image, Java applet,

audio file,...

+ web page consists of base HTML-file which
includes several referenced objects

+ each object is addressable by a URL e.g.,

www . someschool .edu/someDept/pic.gif

host name

path name

Application Layer 2-19

HTTP overview

HTTP: hypertext
transfer protocol

+ Web’ s application layer
protocol

+ client/server model

= client: browser that
requests, receives,
(using HTTP protocol)
and “displays” Web
objects

= server: Web server
sends (using HTTP
protocol) objects in
response to requests

Ny, S .
PC running A 6‘7‘/@3,
Firefox browser 7 Tpre
S'Oonse

ce server

running

Apache Web
server

iphone running
Safari browser

Application Layer 2-20

10

HTTP overview (continued)

uses TCP:

client initiates TCP
connection (creates
socket) to server, port 80

server accepts TCP
connection from client

HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

HTTP is “stateless ”

< server maintains no
information about
past client requests

— aside
protocols that maintain
“ ”
state are complex!
% past history (state) must be
maintained
% if server/client crashes, their
views of “state” may be
inconsistent, must be

Ry

Ry

% TCP connection closed reconciled
HTTP connections
non-persistent HTTP persistent HTTP

o,
£

0,
”Q

at most one object
sent over TCP
connection

= connection then
closed

downloading multiple
objects required
multiple connections

+ multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-22

11

Non-persistent HT TP

suppose user enters URL: (contains text,
www . someSchool . edu/someDepartment/home. index references to 10

jpeg images)

la. HTTP client initiates TCP
connection to HTTP server

(Process) at Ib.HTTP server at host
www.someSchool.edu on port www.someSchool.edu waiting
80 for TCP connection at port 80.
“accepts” connection, notifying
2.HTTP client sends HTTP request client

message (containing URL) into

TCP connection socket. 3.HTTP server receives request
Message indicates that cIierN message, forms response

wants object message containing requested
someDepartmentJhome.indV object, and sends message into

its socket

time

Application Layer 2-23

Non-persistent HT TP (cont.)

/ 4.HTTP server closes TCP

connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

time
6. Steps |-5 repeated for each of
10 jpeg objects

Application Layer 2-24

12

Non-persistent HTTP: response time

RTT (Round-trip time): time
for a small packet to travel
from client to server and
back

HTTP response time:

%+ one RTT to initiate TCP
connection

« one RTT for HTTP request
and first few bytes of HTTP
response to return

% file transmission time

« non-persistent HTTP
response time =

2RTTH+ file transmission
time

initiate TCP

connection \
RTT
request /

file \
time to
RTT. } transmit
/ file
file —

received

v

time time

Application Layer 2-25

Persistent HT TP

non-persistent HTTP issues:

+ requires 2 RTTs per object

« OS overhead for each TCP
connection

« browsers often open
parallel TCP connections
to fetch referenced objects

persistent HTTP:

+ server leaves connection
open after sending
response

« subsequent HTTP
messages between same
client/server sent over
open connection

« client sends requests as
soon as it encounters a
referenced object

+« as little as one RTT for all
the referenced objects

Application Layer 2-26

13

Persistent HT TP Connection oo

« 2 versions
= Without pipelining — HT TP client
issues a new request only when the

previous response/object has been
received.

retrieval time per object = RTT + transmission time

= With pipelining — HTTP client issues
a request as soon as it encounters a
reference

one RTT for all objects

Application Layer 2-27

Non-Persistent vs. Persistent: Example

« Assume a Web page consists of | base HTML page
and 10 images (each of size L bits). Data rate on the
link is R bps. What is the overall retrieval time in case
of:

(2) non-persistent HTTP:

(b) persistent HTTP with pipeline:

Application Layer 2-28

14

HTTP message format

Messages

e |

General headers |

Response headers |

Entity headers |

Request line	-
General headers	
Request headers	
‘ Entity headers | |
’ A blank line ‘ ‘

A blank line |

Request message

Response message

Body

ayer 2-29

HTTP Request Message

< From client to server
% General format

If request line

method |sp URL sp| version |cr
header field name: |sp|value |cr | If]
| 1 header
7 T lines
header field name: |sp|value |cr | If
cr | If a blank line
= body = body

Application Layer 2-30

15

Methods

+ 3 methods in HTTP/1.0: GET, POST, HEAD

« Additional 2 methods in HTTP/I1.1: PUT,
DELETE

* GET — retrieves a document specified in the URL
field from server

* HEAD — get some information about document
but not document itself

» POST — provides some information for server, e.g.
input to server when fills a form

* PUT — uploads file in entity body to path specified
in URL field

* DELETE — deletes file specified in the URL field

Application Layer 2-31

HTTP request message example

carriage return character
. line-feed character
request line /
(GET, POST, > GET /iindex.html HTTP/1.1\r\h
HEAD commands) [Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xmI\r\n
header
’ Accept-Language: en-us,en;q=0.5\r\n
lines | Accept-Encoding: gzip,deflate\r\n
Accept-Charset: 1S0-8859-1,utf-8;9=0.7\r\n
Carriage return, Keep-Alive: 115\r\n
line feed at start Connection: keep-alive\r\n

SO ——\r\n
of line indicates
end of header lines

empty
body

Application Layer 2-32

16

HTTP Response Message

<+ From server to client
% General format

version | sp| status code [sp| phrase

cr

header field name: |sp|value |cr| If

header field name: [sp|value |cr | If

cr| lf

body

)L
(¢

request line

header
lines

a blank line

body

Application Layer 2-33

HTTP response status codes

+ status code is 3-digit integer that indicates the
response to a received request; status phrase
gives short textual explanation of the status

code
200 OK

= request succeeded, requested object later in this msg

301 Moved Permanently

= requested object moved, new location specified later in this msg

(Location:)
400 Bad Request
= request msg not understood by server

404 Not Found

= requested document not found on this server

505 HTTP Version Not Supported

Application Layer 2-34

17

HTTP Response Message Example

status line

(protocol
status code_’ HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

status phrase) Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
header ETag: "17dc6-a5c-bf716880""\r\n

lines Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=1S0-8859-

I\r\n
L_\r\n
dauxfig”,,//”data data data data data ...
requested
HTML file

Application Layer 2-35

HTTP messaging example

Client

[
— | |
= =] —

Request (GET method)
GET Just/binfimagel HTTP/1.1
Accept: image/gif
Accept: image/jpeg

Y

Response

HTTP/1.1 200 OK

Date: Mon, 07-Jan-02 13:15:14 CMT
Server: Challenger

= MIME-version: 1.0

Content-length: 2048

(Body of the document)

Application Layer 2-36

18

HTTP Headers

+ Exchange additional information between the
client and the server

header field name:

sp|value |cr| If

« General Header — gives general information about
the message and can be present in both a request

and response

cache-control

Specifies info about caching

connection Specifies whether connection should be
closed or not
date Shows the date and time at which the

message originated

MIME-version

Shows the MIME version used

Application Layer 2-37

HTTP Request Headers

« REQUEST HEADER — can be present only in a request
message — it specifies the client’s configuration and the
client’s preferred document format

Header Description

accept

Shows the media format the client can accept

accept-language

Shows the language the client can accept

host

Specifies the Internet host of the requested
resource

if-modified-since

Send the document if newer than specified
date

user-agent

Identifies the client program

Application Layer 2-38

19

HTTP Response Header

« RESPONSE HEADER — can be present only in a response
message — it specifies the server’s configuration and
special information about the request

Header Description

public Shows the list of HTTP methods supported by
this server
retry-after Shows how long the service is expected be
unavailable
server Shows the server name and version number
set-cookie Define a name - value pair associated with this
URL

Application Layer 2-39

HTTP Entity Header

« ENTITY HEADER - gives information about the body of
the document/message — mostly present in response
message

Header Description

content-encoding Specifies the encoding scheme

content-language Specifies the language

content-length Shows the length of the document

content-type Specifies the media type

expires Gives the date and time when contents may
change

location Specifies the location of the created or moved
document

Application Layer 2-40

20

Trying out HTTP (client side) for yourself

|. Telnet to your favorite Web server:

telnet www.cse.yorku.ca 80 opens TCP connection to port 80

(default HTTP server port) at cse website.

anything typed in sent
to port 80 at www.cse.yorku.ca

2. type in a GET HTTP request:

GET /cshome/index.html HTTP/1.1 | PY typing this in (hit carriage

Host: www.cse.yorku.ca return twice), you send
this minimal (but complete)

GET request to HTTP server
3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HT TP request/response)

Application Layer 2-41

Trying out HTTP (client side) for yourself

£ eleliany — bash — 102x31

Yong-MacBook-Air:~ elelianys telnet www.cse.yorku.ca B@
Trying 138.63.02.30...

Connected to gold-cse.cse.yorku.ca.

Escape character is '*]'.

GET /fcshome/index.html HTTP/1.1

Host: www.cse.yorku.ca

HTTP/1.1 Zo@ OK

Date: Sun, 13 Jan 2013 19:39:38 GMT

Server: Apache/Z.2.2Z (Unix) DAV/2 mod_ss1/2.2.22 OpenSS5L/1.8.8d PHP/5.2.17
¥-Powered-By: PHP/5.2.17

Transfer-Encoding: chunked

Content-Type: text/html

286d
<html>
<head=
=meta http-equiv="Content-Type" content="textshtml; charset=utf-8">
<meta name="Author" content="York University"=

«meta name="GEMERATOR" content="Palomino WebPal/CMS — www.palominosys. com"=

=meta name="Classification" content=""=>

«script src="../_global/jquery.min. js"></script>
<title=Department of Computer Scienmce and Engineering — Welcome — Home
<ftitle>

<script type="text/javascript" sre=

<script type="text/javascript" s

<script lamguage="javascript" type=
function handleError()

./_javascript/oodomimagerollover.js"s</scripts
./_javascript/webpal_helpers.js"></script>
text/javascript">

Application Layer 2-42

21

Cookie

« HTTP is a stateless protocol — server forgets
about each client as soon as it delivers
response

= Stateless behavior is an issue when:
« Server wants to have accurate count of site visitors
d Server wants to restrict user access, etc.

* Server wants to personalize pages for each client, or
remember selections they made

+ Cookie Technology allows site to keep track of

users

= A cookie is a short piece of data, not code. It is not an
executable program and cannot directly harm the machine

Application Layer 2-43

User-server state

many Web sites use cookies

four components:

)

For new user, server adds
Set-Cookie header to its
response with an
identifier

example:
+ Susan always access

Internet from PC

+ visits specific e-

commerce site for
first time

2) Client stores the ID in a » when initial HTTP
cookie file kept on its disk requests arrives at
and managed by user’ s site, site creates:
browser = unique ID

3) Back-end database keeps * entry in backend
the ID on server database for ID

4) Client uses the ID in all

subsequent requests

Application Layer 2-44

22

Cookies: keeping “state”

client & server
ebay 8734
usual http request msg
- T ‘/;\mazon server
cookie file creates ID

usual http response
set-cookie: 1678

ebay 8734
amazon 1678

— usual http request msg

«J usual http response msg action

one week later:

1678 for user create Packend

entry database

~
cookie: 1678 cookie- access [j
— specific «

/

access

ebay 8734 usual http request msg _
amazon 1678 cookie: 1678 cookie-
—* specific
J usual http response msg [action

Application Layer 2-45

Cookies Example

% el [Wireshark 1.8.4 (SYN Rev 46250 from fvunk-1.8]]
Mle Cdk View Co Captue Analyze Statlstles Telephany Taels Internals | elp

Haea s seewTE EEQQAa & -

liller: |h1|u = lem-enh:n... Clear Have

No. |'Ir'|c]S:Llrc‘.'] Jest natlan Protocoll Lcng1h| Infa -

i EIERER FL S 2 ISR ex HIE Sl Jadyfamon.us.
215 13064872000 74,125 226.01 HTTR ST3HITR/1.1 200 0K
240 1A.O0RATDONG. TR2LUTAR.T 102 InTE MESTT amagas/nso g
245 18 DLATLEN0 152 1EE 1 1B2 216 13732128 HIN: a0a Gl LSILELL0F L
248 1A.D1SAPT000 18216001102 TR M10 InTE MO AT fufloifiepth-

233 14.025G21000 152.108.1.102 54.71.251. 185 HITE 445 GET fimages/G/0L/
Lt e R 16T AR, L0H. L. S04 HI LI/ Lo L GEX) UK
[CENT"NIET=) AP T fimagen /ol
WY 14.U48/50000 12, MK L. AU HiE A2 fimages GOl
e

b HTTR/L.1 200 oMV PN
USTE: LUN, LJ JEM ZULJ SUIJLELS WMIVEAR
Hervers Sarveriyrin
Sel-Cusk_w: skun=noskin: palh=/; domesn=.anscon.com; expires=Sun, "3-Jan-2010 20:31:00 GHTurin
pragma: no-cachevrii
B oame vl 1D TR AT
plp: polocyref="htto:s /v, Emazon. con/wle/pIp.xnl’, CP="CAC [P LAW CUR ADM [VAo IVDe COM> OTPo OUR DO PUDL
tacha-contrel; na-cache,rn
epires: Iy
x-amz-1d-2: QD 1sYaWngaswl/ 2000]) MPY AcebMesAL NP YPEk I /Uq- 055cPfgdep i rin
Wary: &ccopt Hreodiag,llser Egentyryn
Conlenl-Cneedirg: geipyrin
. L

set ek e Wl ouid=iiEases D e N A e r A k| SKT ST B e UV R HAHL S al s
SAT.rnske At Uhid-mAl NZIAS-FLWTIF- 18R4779: PATh=/: AAMATNZ AMATAR AR AR PASSTIE. (- T80 P06 (R0000 0 GMT
: session-1d-Tine MWAEOLL path J; donain (amazon.con; expares ue, Ol-Jan-lUEH OWIOUIOL SM A\r
scian (=190 RIARTPA ROARNMR; pal—/; doms i smicon.comg gl ceeTen, G1 lan 2096 0R:00:01 o s

.) i

[GRS S 52 2A T A e W 90 32 3 a8 o0 Al dh AT B
0010

0050 i
4 Frarme (G50 byles) Heastemhilar 10F 41 7 ytas) | De-chunce:d en ily body (49046 byles) |I

@ [Hypertext ITanster Frotoco ... {Fackers: 3384 Uisplayed: 234 Marked: U Urop... § -rofile: Letault

Application Layer 2-46

23

Issues with Cookies

what cookies can be used
for:

< authorization

+ shopping carts

<+ recommendations

+ user session state (Web
e-mail)

Issues with cookies:

- : aside
cookies and privacy:

< cookies permit sites to
learn a lot about you

< you may supply name and
e-mail to sites

< Undesirable cookies: any server can set a
cookie for any reason. User may not even
be informed that this is happening

Application Layer 2-47

Web caches (proxy server)

goal: satisfy client request without involving origin server

% user sets browser: Web
accesses via cache

« browser sends all HTTP
requests to cache

= object in cache: cache
returns object

= else cache requests
object from origin
server, then returns
object to client

client

origin
server

Application Layer 2-48

24

More about VWeb caching

« cache acts as both why Web caching?
client and server + reduce response time
* server for original for client request
requesting client
= client to origin server « reduce tra;fﬁC on an
+ typically cache is institution s access link
installed by ISP + Internet dense with
. . 13 ”
(university, company, caches: enables “poor
residential ISP) content providers to

effectively deliver
content (so too does

P2P file sharing)

Application Layer 2-49

Caching example: ﬂﬂ ﬁ ﬁ .
_© origin
Eﬂ servers
public

assumptions: Lt

« avg object size: |00K bits

+ avg request rate from browsers to origin
servers:| 5/sec 15 Mbps

RTT from institutional router to any access link
origin server: 2 sec institutional

+ access link rate: 15 Mbps network

ddd

100Mbps LAN

consequences:

LAN traffic
intensity=(|5req/s*| Mb/req)/100Mbps
=0.15
+ WAN traffic problem!
intensity=(15req/s*TMb/req)/ | 5Mbps= |
- total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + msecs

Application Layer 2-50

25

Caching example: fatter access link

assumptions:
+ avg object size: | Mbits origin
avg request rate from browsers to servers

origin servers:|5/sec

RTT from institutional router to any

origin server: 2 sec

access link rate: T5Mbpso,.

|00Mbps

consequences: 100 Mbps
+ LANTI=0.15
WANTI =~ 0.15
total delay = Internet delay + access
delay + LAN delay

= 2sec +W msecs

msecs

access link

Cost: increased access link speed (not cheap!)

Application Layer 2-51

Caching example: install local cache

assumptions:
« avg object size: | Mbits origin
avg request rate from browsers to servers

origin servers:|5/sec

RTT from institutional router to any
origin server: 2 sec

access link rate: 15 Mbps

consequences: 15Mbps.
access link

LANTI:0.15
access link utilization = |
total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

Application Layer 2-52

26

Caching example: install local cache

Calculating access link
utilization, delay with cache: ﬂ

« suppose cache hit rate is
0.4(typical 0.2~0.7)

H ﬂ origin

servers
= 40% requests satisfied at cache, public
60% requests satisfied at origin Lal’s ul
+ access link utilization: =<3
= 60% of requests use access link
+ data rate to browsers over access link 15 Mbps
= 0.6*| 5req/s* | Mbps = 9 Mbps access link
= TI=9/15=6 institutional
< total dEIQ)’ network 100bps L AN
= = 0.6 * (delay from origin servers) +0.4 :
* (delay when satisfied at cache) ;; z i z : z local web
= =0.6 (2.01) + 0.4 (~msecs) ' i cache

= =~].2secs

= |ess than with 100 Mbps link (and
cheaper too!)

Application Layer 2-53

Web Cache Challeng_e_

+ Goal: do not send object client /™ server
if cache has up-to-date ,#
cached version '
+ What if cached data is —{ HTTP request msg o
changed? If-modified-since: <date> —» OnlgtCt
+ Solution: use conditional —— modified
GET in HTTP message «— HTLPT;?;fgnse before
IT-modified-since: 304 Not Modified <date>
<date>

K3
o

Server: response CONtains = ==-=-=-=======———————-
no object if cached copy

is up-to-date: = HTTP request msg
HTTP/1.0 304 Not If-modified-since: <date> — object
Modified modified
HTTP response — after
T HTTP/1.0 200 OK <date>
<data>

Application Layer 2-54

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP
23 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-55

FTP: the file transfer protocol

file transfer
FTP 1 Frp FTP

9 _USET i client server
interface

user _
athost | ™ N remote file
' local file : system
_ system (|

« transfer file to/from remote host
+ client/server model
= client: side that initiates transfer (either to/from remote)

= server: remote host
+ ftp: RFC 959
+ ftp server: port 21

Application Layer 2-56

28

FTP: separate control, data connections

+ FTP client contacts FTP server - TCP control ;gg’;c“"’”’

at port 21, using TCP ’ E
+ client authorized over control & ;

. TCP data connection,
connection FTP —server port 20 FTP
. client server

+ client browses remote

directory, sends commands

over control connection + server opens another TCP
. when server receives file data connection to transfer
: another file

transfer command, such as get o
or put, server opens 2" TCP FTP server maintains

data connection (for file) to state : current directory,
client earlier authentication

+ after transferring one file,
server closes data connection

Application Layer 2-57

FTP commands
sample commands:

% asc - sent as ASCII
text over control

« Examples
» ftp my@cse.yorku.ca

channel
. . = |s —al
« bin — sent as binary . .
. . cd prism
< IS - I|St Of flle] get indeX.html
« cd — change directory * put myfile

« get filename —
retrieves a file from
remote host

+ put filename stores
file onto remote host

% ye - quit

Application Layer 2-58

29

FTP Example

&} eleliany — ftp — 102x31

Yong—MacDook-Air:~ eleliany$ ftp peterlian@cse.yorku.ca
Connected to cse.yorku.ca.

220-York University Departmert of Computer Science and Engineering FTP Server
220 FTP Serve- ready.

331 Password -equired for peterlian

Password:

230 User pete-lian logged in

Remote system type is UNIX.

Using binary mode to transfer files.

ftp= 1s

229 Entering Extended Passive Mode (|| |48402])

158 Opening ASCII node data connection for file list

drwx—— = 2 peterlian faculty 4296 Dec 18 13:1@ prism
drwk——x——x 2 pelerlian Tacully 4896 Dec 18 13:1E€ www
226 Transfer complete

ftp= cd prism

25@ CWD command successful

ftp= 1s -al

229 Entering Extendcd Passive Mede (|| |43956|)

158 Opening ASCII node data connection for file list

drwx—————- 2 peterlian faculty 4396 Dec 18 13:1@ .
drwx——x——x 4 peterlian faculty 4396 Jan B 12:22 ..
— WX ————— 1 peterlian faculty 1348 Dec 18 13:12 .cshrc

226 Transfer complete

ftp= get .csh-c

local: .cshrc remote: .cshrc

229 Entering Extended Passive Mode (||]4929])

158 Opening BINARY mode data connection for .cshrec (1849 bytes)

lees | | 1e4@
226 Transfer complete

1848 bytes received in 60:80 (65.63 KiB/s)

1.75 MiE/s B@:83 ETA

Application Layer 2-59

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP
2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-60

30

Electronic mail

Three major components:

2%
o
2%
o3

2%
o

user agents
mail servers

simple mail transfer
protocol: SMTP

User Agent

a.k.a. “mail reader”
composing, editing, reading
mail messages

e.g., Outlook, Thunderbird,
iPhone mail client

outgoing, incoming
messages stored on server

[outgoing

message queue

O user mailbox

mail
server

TN
00000

user
agent

Application Layer 2-61

Electronic mail: mail servers

mail servers:

Ry
<

Ry
<

Ry
<

mailbox contains incoming
messages for user

message queue of outgoing
(to be sent) mail messages
SMTP protocol between
mail servers to send email
messages
= client: sending mail
server
» “server”: receiving mail
server

user
agent

mail
server

[
00000

Application Layer 2-62

31

Electronic Mail: SMTP [RFC 2821]

« uses TCP to reliably transfer email message from
client to server, port 25

+ direct transfer: sending server to receiving
server

+ three phases of transfer
* handshaking (greeting)
= transfer of messages
= closure

+ command/response interaction (like HTTP, FTP)
= commands: ASCI| text
= response: status code and phrase

« messages must be in 7-bit ASCI

Application Layer 2-63

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice’s
message “to” message over the TCP
bob@someschool .edu connection

2) Alice’ s UA sends message 5) Bob’ s mail server places the
to her mail server; message message in Bob' s mailbox
placed in message queue 6) Bob invokes his user agent

3) client side of SMTP opens to read message
TCP connection with Bob’ s
mail server

mail
* server

nem
00000

Alice’ s mail server Bob’ s mail server

Application Layer 2-64

Sample SMTP interaction

S-SMTP server, C-SMTP client

NOULOOONOLONLOLOW!m

220 hamburger.edu

HELO crepes.fr

250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with "." on a line by itself
Do you like ketchup?

How about pickles?

250 Message accepted for delivery
QUIT

221 hamburger.edu closing connection
Application Layer 2-65

Mail message format

SMTP: protocol for

exchanging email msgs _
ging g L header blank

RFC 822: standard for text DE—
message format:

« header lines, e.g.,

= To: g body

= From:
= Subject:
different from SMTP MAIL

— line

FROM, RCPT T
commands!

> Body: the “message”

= ASCII characters only

Application Layer 2-66

33

Mail access protocols

mail access

" S‘gffétwv SMTP SMTP protocol |agen i = £
' (e.g., POP, [da
-2 [mAp) g T
Ooo0o 00000

sender’ s mail receiver’ s mail

server server

+ SMTP: delivery/storage to receiver’ s server

+ mail access protocol: retrieval from server
= POP: Post Office Protocol [RFC 1939]: authorization,

download

= IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on

server

= HTTP: gmail, Hotmail, Yahoo! Malil, etc.

Application Layer 2-67

POP3 protocol

authorization phase —
client commands:
= user: declare username
= pass: password
server responses
= +0OK
= -ERR
transaction phase, client, —
« DISt: list message numbers
retr: retrieve message by
number
dele: delete
quit

|m OO0V NVOOLLOLnWm O||W 9 W 9 W|

+0K POP3 server ready
user bob

+0K

pass hungry

+0K user successfully logged on

list
1 498
2 912

retr 1
<message 1 contents>

dele 1
retr 2
<message 1 contents>

dele 2
quit
+0OK POP3 server signing off

Application Layer 2-68

34

POP3 (more) and IMAP

more about POP3

+ previous example uses
POP3 “download and
delete” mode

= Bob cannot re-read e-

mail if he changes
client

+ POP3 “download-and-
keep”: copies of messages
on different clients

+» POP3 is stateless across
sessions

M

AP

+ keeps all messages in one

place: at server

+ allows user to organize

messages in folders

<> keeps user state across

sessions:

= names of folders and
mappings between
message |Ds and folder
name

Application Layer 2-69

Chapter 2: outline

2.1 principles of network applications

= app architectures
= app requirements

2.2 Web and HTTP
2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-70

35

DNS: domain name system

% Internet-host identifiers
= |P addresses
* unique, universal identifiers, e.g. 74.125.226.50

* Scanning IP address from left to right more and more information about
specific location of host can be obtained

+ Difficult to remember

= Symbolic (DNS) names
* Unique user friendly name, e.g. www.google.com
* Easy to remember — preferred by humans

* Provide little information about host location — difficult to aggregate by
routers

* Consist of variable number of alphanumeric characters — difficult to
process by routers

« DNS enables IP address to Symbolic name translation and vice
versa

Application Layer 2-71

Domain Name Label

Label Description
acro Airlines and aerospace companies
hiz Businesses or firms (similar to “com™)
com Commercial organizations
coop Cooperative business organizations
edu Educational institutions
g0V Government institutions
info Information service providers
int International organizations
mil Military groups
museum Museums and other non-profit organizations
name Personal names {individuals)
net Network support centers
org Nonprofil organizations
pro Professional individual organizations

Application Layer 2-72

36

DNS Names vs. URLs

« DNS name # URL

= Typical URL contains three parts:
URL = protocol + DNS name + path

http://www.cs.yorku.ca/course/4213/index.himl
%_J . o iy

protocol DNS name of Server machine path
! '
IP address host specific

both must be globally unique
(mapping from one to another done by DNS)

Application Layer 2-73

Elements of DNS

« Distributed database — implemented as a hierarchy
of many name (DNS) servers

« Application-layer protocol — allows hosts to query
distributed database
= Runs over UDP on port 53

= Unlike HTTP, DNS is not an application with which users

directly interact — DNS provides service to other
User

é Host

name

Host
g name
Application File DNS
transfer ; DNS
layer client client server
I IP address 1 !
|]
IP address Query
Response
Transport layer ayer 2-74

37

DNS: a distributed, hierarchical database

pommmmmmemne
{__com DNS servers

| yahoo.com amazoncom PPSOG poeau Dmassedy

i DNS servers DNS SEI;VGI’S DNS servers DNS serversDNS servers

+ 3 types of DNS servers — Root DNS server, Top-Level Domain
(TLD) server, Authoritative DNS server

+ No single DNS server has all mappings for all hosts — mappings are
divided and distributed across DNS servers

Application Layer 2-75

DNS: root name servers

+ contacted by local name server that can not resolve name

% root name server:
* contacts authoritative name server if name mapping not known
= gets mapping
" returns mapping to local name server

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD k. RIPE London (17 other sites)

h. ARL Aberdeen, MD .

j. Verisign, Dulles VA (69 other sites) i. Netnod, Stockholm (37 other sites)
e. NASA Mt View, CA _.| = m. WIDE Tokyo
f. Internet Software C. h (5 other sites)

Palo Alto, CA (and 48 other
sites) \ 2
a. Verisign, Los Angeles CA h

(5 other sites)
b. USC-ISI Marina del Rey, CA

I. ICANN Los Angeles, CA
(41 other sites)

13 root name

P “servers”
i, O worldwide

g. US DoD Columbus,

OH (5 other sites) - il

Application Layer 2-76

38

TLD, authoritative servers

top-level domain (TLD) servers:

= responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

= Network Solutions maintains servers for .com TLD
= Educause for .edu TLD

authoritative DNS servers:

* organization’ s own DNS server(s), providing
. ’
authoritative hostname to |P mappings for organization s
named hosts

= can be maintained by organization or service provider

Application Layer 2-77

Local DNS name server

+ does not strictly belong to hierarchy

+ each ISP (residential ISP, company, university) has
one
* also called “default name server”

» when host makes DNS query, query is sent to its
local DNS server

= has local cache of recent name-to-address translation
pairs (but may be out of date!)

= acts as proxy, forwards query into hierarchy

Application Layer 2-78

39

DNS name

root DNS server

resolution example H

+ host at cis.poly.edu
wants |P address for
gaia.cs.umass.edu

iterated query:

< contacted server
replies with name of
server to contact

% “l don’ t know this
name, but ask this
”
server

TLD DNS server

11
local DNS serve
dns.poly.edu

6
‘ authoritative DNS server

dns.cs.umass.edu
requesting host

cis.poly.edu :' E

gaia.cs.umass.edu

Application Layer 2-79

DNS name

resolution example

root DNS server

recursive query:

< puts burden of name
resolution on
contacted name
server

< heavy load at upper
levels of hierarchy?

5 H X
7N
TLD DNS
server

ti
local DNS server l
dns.poly.edu 5[4

‘ authoritative DNS server

dns.cs.umass.edu
requesting host

cis.poly.edu E’ E

gaia.cs.umass.edu

Application Layer 2-80

40

DNS: caching, updating records

+ once (any) name server learns mapping, it caches
mapping
= cache entries timeout (disappear) after some time (TTL)
= TLD servers typically cached in local name servers
* thus root name servers not often visited
+ cached entries may be out-of-date (best effort
name-to-address translation!)

= if name host changes IP address, may not be known
Internet-wide until all TTLs expire

+ update/notify mechanisms proposed IETF standard
= RFC 2136

Application Layer 2-81

DNS records"

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

type=A type=CNAME
* name is hostname * name is alias name for some
= value is IP address “canonical” (the real) name
t)(pe=NS = www.ibm.com is really
* name is domain (e.g., servereast_backup2.ibm._com
foo.com) = value is canonical name
= value is hostname of
authoritative name txpe=MX

server for this domain . .
= value is name of mailserver

associated with name

Application Layer 2-82

41

DNS protocol, messages

« query and reply messages, both with same message

format

msg header

< identification: 16 bit # for
query, reply to query uses
same #

% flags:
= query or reply
= recursion desired
= recursion available

= reply is authoritative

2 bytes 2 bytes

| _~identification /flags

ions # answer RRs

authority RRs | # additional RRs

guestions (variable # of questions)

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

Application Layer 2-83

DNS protocol, messages

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

+—— 2bytes ——><«—— 2bytes ——»

identification flags

questions # answer RRs

authority RRs | # additional RRs

— questions (variable # of questions)

| answers (variable # of RRs)

— authority (variable # of RRs)

— additional info (variable # of RRs)

Application Layer 2-84

42

Inserting records into DNS

+ example: new startup “Network Utopia”
+ register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)

= provide names, |IP addresses of authoritative name server

(primary and secondary)

= registrar inserts two RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)

(dnsl.networkutopia.com, 212.212.212.1, A)

« create authoritative server type A record for
www.networkuptopia.com; type MX record for

networkutopia.com

Application Layer 2-85

Attacking DNS

DDoS attacks
+ Bombard root servers
with traffic
= Not successful to date
= Traffic Filtering

= Local DNS servers
cache IPs of TLD
servers, allowing root
server bypass

<+ Bombard TLD servers

= Potentially more
dangerous

Redirect attacks
« Man-in-middle

= Intercept queries
+ DNS poisoning

= Send bogus relies to
DNS server, which
caches

Exploit DNS for DDoS

+ Send queries with
spoofed source
address: target IP

+ Requires amplification

Application Layer 2-86

43

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP
2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS
2.6 P2P applications

Application Layer 2-87

Pure P2P architecture

< no always-on server

« arbitrary end systems
directly communicate

« peers are intermittently
connected and change IP
addresses

examples:

= file distribution
(BitTorrent)

= Streaming (KanKan)
= VolIP (Skype)

Application Layer 2-88

44

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?

= peer upload/download capacity is limited resource

us: server upload
capaci‘ty s ; g
file, size F Gl
server
d,./
g network (with abundant
bandwidth) u,-\

u;: peer i upload
capacity

d;: peer i download
capacity

Application Layer 2-89

File distribution time: client-server

% server transmission: must
sequentially send (upload) N
file copies:

= time to send one copy: F/u,
= time to send N copies: NF/u,

« client: each client must
download file copy

= d,;, = min client download rate
= min client download time: F/d

min

time to distribute F

p ; ;
' o N clients using DC_S > ma X{NF/US,, F/dmi n}
client-server approach

increases linearly in N

Application Layer 2-90

45

File distribution time: P2P HE

< Sserver transmission: must
upload at least one copy

= time to send one copy: F/u,
« client: each client must

download file copy g g ' g’

* min client download time: F/d,;,
« clients:as aggregate must download NF bits

* max upload rate (limting max download rate) is u, + 2u,

time to distribute F

to N clients using Dp,p > max{F/ug,F/d,,, ,NF/(us + Tu)}
P2P approach

increases linearly in N ...
... but so does this, as each peer brings service capacity

Application Layer 2-91

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, ug,=10u, d,

min 2 us

35

= P2P
-e— Client-Server

3

Minimum Distribution Time

Application Layer 2-92

46

P2P file distribution: BitTorrent

>

L)

» file divided into 256Kb chunks
» peers in torrent send/receive file chunks

*

L)

L X4

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file

™ -
e

E
/
g

Alice arrives i
... obtains list :
of peers from tracker /

... and begins exchanging = _g\

file chunks with peers in torrent | —

>

Application Layer 2-93

Chapter 2: summary

our study of network apps now complete!

+ application architectures + specific protocols:
= client-server
= HTTP
= P2P
= FTP

+ application service
requirements:
= reliability, bandwidth, delay

+ Internet transport service
model

= connection-oriented,

reliable: TCP
= unreliable, datagrams: UDP

SMTP, POP, IMAP
= DNS
P2P: BitTorrent

Application Layer 2-94

47

Chapter 2: summary

most importantly: learned about protocols!

+ typical request/reply

: important themes:
message exchange:

= client requests info or % centralized vs. decentralized
service] < stateless vs. stateful
= server responds with . .
data, status code % reliable vs. unreliable msg
+ message formats: transfer
= headers: fields giving + “complexity at network

info about data

= data: info bein
communicate

edge”

Application Layer 2-95

Computer Networking

A note on these slides

KUROSE ROSS

Part of PPT slides were adopted from Prof. Natalija

Vlajic’ early CSE3214 course and the rest were ComPUt?r
adopted from the book “Computer Networking: A Networklng: A TOP
Top Down Approach” 6" Edition by Jim Kurose and Down APPI‘OGCh
Keith Ross 6t edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012
©

All material copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved Introduction 1-96

48

