
1

CSE 3214: Computer Network
Protocols and Applications

−Application Layer

Dr. Peter Lian, Professor
Department of Computer Science and Engineering

York University
Email: peterlian@cse.yorku.ca

Office: 1012C Lassonde BuildingOffice: 1012C Lassonde Building
Course website:

http://wiki.cse.yorku.ca/course_archive/2012-
13/W/3214

Chapter 2: outline

2.1 principles of network applications
2 2 Web and HTTP2.2 Web and HTTP
2.3 FTP
2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS
2 6 P2P applications

Application Layer 2-2

2.6 P2P applications

Chapter 2: application layer

our goals:
 conceptual,

implementation aspects

 learn about protocols by
examining popular
application-level implementation aspects

of network application
protocols
 transport-layer

service models
 client-server

paradigm

application-level
protocols
 HTTP
 FTP
 SMTP / POP3 / IMAP
 DNS

 creating network
applications

Application Layer 2-3

 peer-to-peer
paradigm

applications
 socket API

Some network apps

 e-mail
 web

 voice over IP (e.g., Skype)
 real-time video

 text messaging
 remote login
 P2P file sharing
 multi-user network games
 streaming stored video

(YouTube, Hulu, Netflix)

conferencing
 social networking
 search
 …
 …

Application Layer 2-4

()

2

Creating a network app
write programs that:
 run on (different) end systems
 communicate over network

application
transport
network
data link
physical

 e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

 network-core devices do not
application
transport
network

application
transport
network
data link
physical

Application Layer 2-5

run user applications
 applications on end systems

allows for rapid app
development, propagation

data link
physical

Application architectures

possible structure of applications:
 client server client-server
 peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

server:
 always-on host
 permanent IP address
 data centers for scaling

clients:
 communicate with server
 may be intermittently

connected
client/server

Application Layer 2-7

connected
 may have dynamic IP

addresses
 do not communicate directly

with each other

P2P architecture
 no always-on server
 arbitrary end systems

directly communicate

peer-peer

y
 peers request service from

other peers, provide service
in return to other peers
 self scalability – new

peers bring new service
capacity, as well as new
service demands

Application Layer 2-8

service demands
 peers are intermittently

connected and change IP
addresses
 complex management

3

Processes communicating

process: program running
within a host client process: process that

clients, servers

 within same host, two
processes communicate
using inter-process
communication (defined by
OS)

 processes in different hosts
communicate by exchanging

client process: process that
initiates communication

server process: process that
waits to be contacted

 aside: applications with P2P

Application Layer 2-9

y g g
messages

 aside: applications with P2P
architectures have client
processes & server
processes

Sockets
 process sends/receives messages to/from its socket
 socket analogous to door
 sending process shoves message out doorg p g
 sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

controlled by
app developer

application

process
application

process
socket

Application Layer 2-10

Internet

controlled
by OS

transport

physical

link

network

transport

physical

link

network

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-

 identifier includes both IP
address and port numbers
associated with process on  host device has unique 32-

bit IP address
 Q: does IP address of host

on which process runs
suffice for identifying the
process?

p
host.

 example port numbers:
 HTTP server: 80
 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:

 A: no, many processes
can be running on same

Application Layer 2-11

server:
 IP address: 128.119.245.12
 port number: 80

 more shortly…

can be running on same
host

App-layer protocol defines
 types of messages

exchanged,
 e g request response

open protocols:
 defined in RFCs

ll f i bili e.g., request, response
 message syntax:
 what fields in messages

& how fields are
delineated

 message semantics
 meaning of information

 allows for interoperability
 e.g., HTTP, SMTP
proprietary protocols:
 e.g., Skype

Application Layer 2-12

g
in fields

 rules for when and how
processes send & respond
to messages

4

What transport service does an app need?

data integrity
 some apps (e.g., file transfer,

web transactions) require

throughput
 some apps (e.g.,

multimedia) require
100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

timing
 some apps (e.g., Internet

l h i i

minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

Application Layer 2-13

telephony, interactive
games) require low delay
to be “effective”

security
 encryption, data integrity,

…

Transport service requirements: common apps

application data loss throughput time sensitive

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up

no
no
no
yes, 100’s
msec

yes, few secs

Application Layer 2-14

text messaging no loss elastic yes, 100’s
msec
yes and no

Internet transport protocols services

TCP service:
 reliable transport between

di d i i

UDP service:
 unreliable data transfer

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,

between sending and
receiving process

 does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,

i

Application Layer 2-15

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

orconnection setup,

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

application
application
layer protocol

underlying
transport protocol

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary

TCP
TCP
TCP
TCP
TCP or UDP

Application Layer 2-16

(e.g., Skype) TCP or UDP

5

Securing TCP

TCP & UDP
 no encryption

SSL is at app layer
 Apps use SSL libraries  no encryption

 cleartext passwds sent
into socket traverse
Internet in cleartext

SSL
 provides encrypted

TCP

 Apps use SSL libraries,
which “talk” to TCP

SSL socket API
 cleartext passwds sent

into socket traverse
Internet encrypted

TCP connection
 data integrity
 end-point

authentication

Application Layer 2-17

Chapter 2: outline

2.1 principles of network applications
 app architecturesapp architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP

Application Layer 2-18

2.5 DNS
2.6 P2P applications

Web and HTTP

First, a review…
 web page consists of objects
 object can be HTML file, JPEG image, Java applet,

audio file,…
 web page consists of base HTML-file which

includes several referenced objects
 each object is addressable by a URL, e.g.,

Application Layer 2-19

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext
transfer protocol
W b’ li i l  Web s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

PC running
Firefox browser

server
running

Apache Web

Application Layer 2-20

j
 server: Web server

sends (using HTTP
protocol) objects in
response to requests

pac e eb
server

iphone running
Safari browser

6

HTTP overview (continued)

uses TCP:
 client initiates TCP

HTTP is “stateless”
 server maintains no

f b connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged

information about
past client requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

aside

Application Layer 2-21

g) g
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

maintained
 if server/client crashes, their

views of “state” may be
inconsistent, must be
reconciled

HTTP connections

non-persistent HTTP
 at most one object

persistent HTTP
 multiple objects can  at most one object

sent over TCP
connection
 connection then

closed
 downloading multiple

objects required

 multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-22

objects required
multiple connections

Non-persistent HTTP
suppose user enters URL:

1a HTTP client initiates TCP

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP i k

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3 HTTP server receives request

Application Layer 2-23

TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

Non-persistent HTTP (cont.)

5. HTTP client receives response

4. HTTP server closes TCP
connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

time

Application Layer 2-24

7

Non-persistent HTTP: response time

RTT (Round-trip time): time
for a small packet to travel
from client to server and
b kback

HTTP response time:
 one RTT to initiate TCP

connection
 one RTT for HTTP request

and first few bytes of HTTP
response to return

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file

Application Layer 2-25

p
 file transmission time
 non-persistent HTTP

response time =
2RTT+ file transmission
time

file
received

time time

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object

persistent HTTP:
 server leaves connection

 f di  OS overhead for each TCP
connection

 browsers often open
parallel TCP connections
to fetch referenced objects

open after sending
response

 subsequent HTTP
messages between same
client/server sent over
open connection

 client sends requests as

Application Layer 2-26

soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Persistent HTTP Connection

 2 versions
 Without pipelining – HTTP client Without pipelining HTTP client

issues a new request only when the
previous response/object has been
received.

 With pipelining – HTTP client issues
 t it t a request as soon as it encounters a

reference

Application Layer 2-27

Non-Persistent vs. Persistent: Example

 Assume a Web page consists of 1 base HTML page
and 10 images (each of size L bits). Data rate on the and 10 images (each of size L bits). Data rate on the
link is R bps. What is the overall retrieval time in case
of:
(a) non-persistent HTTP:

(b) HTTP h l(b) persistent HTTP with pipeline:

Application Layer 2-28

8

HTTP message format

Application Layer 2-29

HTTP Request Message

 From client to server
 General format

request line

header
lines

method sp sp cr lfversionURL

~~ ~~

cr lfvalueheader field name: sp

cr lfvalueheader field name: sp

Application Layer 2-30

body

cr lf

body~~ ~~

a blank line

Methods
 3 methods in HTTP/1.0: GET, POST, HEAD
 Additional 2 methods in HTTP/1.1: PUT, ,

DELETE
 GET – retrieves a document specified in the URL

field from server
 HEAD – get some information about document

but not document itself
 POST r ides s me inf rmati n f r ser er e

Application Layer 2-31

 POST – provides some information for server, e.g.
input to server when fills a form
 PUT – uploads file in entity body to path specified

in URL field
 DELETE – deletes file specified in the URL field

HTTP request message example

request line

carriage return character
line-feed characterrequest line

(GET, POST,
HEAD commands)

header
lines

carriage return,
li f d

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n

Application Layer 2-32

line feed at start
of line indicates
end of header lines

Connection: keep-alive\r\n
\r\n

empty
body

9

HTTP Response Message

 From server to client
 General format

request line

header
lines

version sp sp cr lfphrasestatus code

~~ ~~

cr lfvalueheader field name: sp

cr lfvalueheader field name: sp

Application Layer 2-33

body

cr lf

body~~ ~~

a blank line

HTTP response status codes
 status code is 3-digit integer that indicates the

response to a received request; status phrase
gives short textual explanation of the status

200 OK
 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in this msg

(Location:)

gives short textual explanation of the status
code

Application Layer 2-34

(Location:)
400 Bad Request

 request msg not understood by server
404 Not Found

 requested document not found on this server
505 HTTP Version Not Supported

HTTP Response Message Example

status line
(protocol
status code HTTP/1.1 200 OK\r\nstatus code
status phrase)

header
lines

/ \ \
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n

Application Layer 2-35

data, e.g.,
requested
HTML file

Content-Type: text/html; charset=ISO-8859-
1\r\n

\r\n
data data data data data ...

HTTP messaging example

Application Layer 2-36

10

HTTP Headers
 Exchange additional information between the

client and the server
cr lfvalueheader field name: sp

 General Header – gives general information about
the message and can be present in both a request
and response

Header Description
cache-control Specifies info about caching

f h h h ld b

Application Layer 2-37

connection Specifies whether connection should be
closed or not

date Shows the date and time at which the
message originated

MIME-version Shows the MIME version used
…

HTTP Request Headers
 REQUEST HEADER – can be present only in a request

message – it specifies the client’s configuration and the
client’s preferred document format

Header Description

accept Shows the media format the client can accept

accept-language Shows the language the client can accept
host Specifies the Internet host of the requested

resource

Application Layer 2-38

if-modified-since Send the document if newer than specified
date

user-agent Identifies the client program
…

HTTP Response Header
 RESPONSE HEADER – can be present only in a response

message – it specifies the server’s configuration and
special information about the request

Header Description

public Shows the list of HTTP methods supported by
this server

retry-after Shows how long the service is expected be
unavailable

server Shows the server name and version number

Application Layer 2-39

set-cookie Define a name – value pair associated with this
URL

…

HTTP Entity Header
 ENTITY HEADER – gives information about the body of

the document/message – mostly present in response
message

Header Description

content-encoding Specifies the encoding scheme

content-language Specifies the language
content-length Shows the length of the document

content-type Specifies the media type

Application Layer 2-40

expires Gives the date and time when contents may
change

location Specifies the location of the created or moved
document

…

11

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80opens TCP connection to port 80
(default HTTP server port) at cse website.
anything typed in sent
to port 80 at www.cse.yorku.ca

telnet www.cse.yorku.ca 80

2. type in a GET HTTP request:

GET /cshome/index.html HTTP/1.1 by typing this in (hit carriage
return twice) you send

Application Layer 2-41

Host: www.cse.yorku.ca return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Trying out HTTP (client side) for yourself

Application Layer 2-42

Cookie
 HTTP is a stateless protocol – server forgets

about each client as soon as it delivers
response
 Stateless behavior is an issue when:

• Server wants to have accurate count of site visitors
• Server wants to restrict user access, etc.
• Server wants to personalize pages for each client, or

remember selections they made

Application Layer 2-43

remember selections they made

 Cookie Technology allows site to keep track of
users
 A cookie is a short piece of data, not code. It is not an

executable program and cannot directly harm the machine

User-server state

many Web sites use cookies
four components:

example:
 Susan always access four components:

1) For new user, server adds
Set-Cookie header to its
response with an
identifier

2) Client stores the ID in a
cookie file kept on its disk

d d b ’

 Susan always access
Internet from PC

 visits specific e-
commerce site for
first time

 when initial HTTP
requests arrives at
site site creates:

Application Layer 2-44

and managed by user’s
browser

3) Back-end database keeps
the ID on server

4) Client uses the ID in all
subsequent requests

site, site creates:
 unique ID
 entry in backend

database for ID

12

Cookies: keeping “state”

client server

ebay 8734 usual http request msg

usual http response msg

cookie file

usual http request msg
cookie: 1678 cookie-

specific
action

access

usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

backend
database

Application Layer 2-45

p p g

usual http response msg

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

Cookies Example

Application Layer 2-46

Issues with Cookies

what cookies can be used
for:

 authorization

cookies and privacy:
 cookies permit sites to

l l b

aside

 authorization
 shopping carts
 recommendations
 user session state (Web

e-mail)

learn a lot about you
 you may supply name and

e-mail to sites

Issues with cookies:
U d i bl ki

Application Layer 2-47

 Undesirable cookies: any server can set a
cookie for any reason. User may not even
be informed that this is happening

Web caches (proxy server)

 user sets browser: Web

goal: satisfy client request without involving origin server

accesses via cache
 browser sends all HTTP

requests to cache
 object in cache: cache

returns object
 else cache requests

object from origin

client

proxy
server

origin
server

Application Layer 2-48

object from origin
server, then returns
object to client

client origin
server

13

More about Web caching

 cache acts as both
client and server

why Web caching?
 reduce response time client and server

 server for original
requesting client

 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

 reduce response time
for client request

 reduce traffic on an
institution’s access link

 Internet dense with
caches: enables “poor”
content providers to

Application Layer 2-49

residential ISP) content providers to
effectively deliver
content (so too does
P2P file sharing)

Caching example:

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to origin

origin
servers

public
Internet

 avg request rate from browsers to origin
servers:15/sec

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 15 Mbps

consequences:
 LAN traffic

intensity=(15req/s*1Mb/req)/100Mbps

institutional
network

100Mbps LAN

15 Mbps
access link

Application Layer 2-50

y (q q) p
=0.15

 WAN traffic
intensity=(15req/s*1Mb/req)/15Mbps= 1

 total delay = Internet delay + access
delay + LAN delay
= 2 sec + minutes + msecs

problem!

assumptions:
 avg object size: 1Mbits
 avg request rate from browsers to

Caching example: fatter access link

origin
servers avg request rate from browsers to

origin servers:15/sec
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 15Mbps

consequences:
 LAN TI = 0.15
 WAN TI = 1

servers

15 Mbps
access link

100Mbps
100 Mbps

0.15

public
Internet

institutional

Application Layer 2-51

 total delay = Internet delay + access
delay + LAN delay
= 2 sec + minutes + msecs

msecs

Cost: increased access link speed (not cheap!)

0.15
network

100Mbps LAN

Caching example: install local cache

origin
servers

assumptions:
 avg object size: 1 Mbits
 avg request rate from browsers to

institutional

servers

15Mbps
access link

 avg request rate from browsers to
origin servers:15/sec

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 15 Mbps

consequences:
 LAN TI: 0.15
 access link utilization = 1

public
Internet

network
100Mbps LAN

Application Layer 2-52

local web
cache

 total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

14

Caching example: install local cache
Calculating access link

utilization, delay with cache:
 suppose cache hit rate is

0 4(typical 0 2~0 7)
origin

servers0.4(typical 0.2 0.7)
 40% requests satisfied at cache,

60% requests satisfied at origin

servers

15 Mbps
access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*15req/s*1Mbps = 9 Mbps
 TI = 9/15 = .6

public
Internet

institutional

Application Layer 2-53

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 100 Mbps link (and

cheaper too!)

network
100bps LAN

local web
cache

Web Cache Challenge
 Goal: do not send object

if cache has up-to-date
cached version

 What if cached data is HTTP request msg bj t

client server

changed?
 Solution: use conditional

GET in HTTP message
If-modified-since:
<date>

 server: response contains
no object if cached copy

q g
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

Application Layer 2-54

is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

Chapter 2: outline

2.1 principles of network applications
 app architecturesapp architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP

Application Layer 2-55

2.5 DNS
2.6 P2P applications

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

 transfer file to/from remote host
 client/server model

Application Layer 2-56

 client: side that initiates transfer (either to/from remote)
 server: remote host

 ftp: RFC 959
 ftp server: port 21

15

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP
l h d l

TCP control connection,
server port 21

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, such as get

FTP
client

FTP
server

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 FTP i t i

Application Layer 2-57

or put, server opens 2nd TCP
data connection (for file) to
client

 after transferring one file,
server closes data connection

 FTP server maintains
“state”: current directory,
earlier authentication

FTP commands
sample commands:
 asc - sent as ASCII

text over control
h l

 Examples
 ftp my@cse yorku cachannel

 bin – sent as binary
 ls – list of file
 cd – change directory
 get filename –

retrieves a file from

ftp my@cse.yorku.ca
 ls –al
 cd prism
 get index.html
 put myfile

Application Layer 2-58

retrieves a file from
remote host

 put filename stores
file onto remote host

 ye - quit

FTP Example

Application Layer 2-59

Chapter 2: outline

2.1 principles of network applications
 app architecturesapp architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP

Application Layer 2-60

2.5 DNS
2.6 P2P applications

16

Electronic mail

Three major components:
 user agents

il

user mailbox

outgoing
message queue

mail

user
agent

 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”

i diti di

mail
server

mail

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

Application Layer 2-61

 composing, editing, reading
mail messages

 e.g., Outlook, Thunderbird,
iPhone mail client

 outgoing, incoming
messages stored on server

mail
server

user
agent

user
agent

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

 f mail

user
agent

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail servers to send email
messages
 client: sending mail

mail
server

mail

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

Application Layer 2-62

g
server

 “server”: receiving mail
server

mail
server

user
agent

user
agent

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer
 handshaking (greeting)
 transfer of messages
 closure

Application Layer 2-63

 command/response interaction (like HTTP, FTP)
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

4) SMTP client sends Alice’s
message over the TCP
connection

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

Application Layer 2-64

user
agent

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

17

Sample SMTP interaction
S-SMTP server, C-SMTP client

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself

Application Layer 2-65

S: 354 Enter mail, end with . on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Mail message format

SMTP: protocol for
exchanging email msgs header

blank
RFC 822: standard for text

message format:
 header lines, e.g.,

 To:
 From:
 Subject:
different from SMTP MAIL

body

blank
line

Application Layer 2-66

different from SMTP MAIL
FROM, RCPT TO:
commands!

 Body: the “message”
 ASCII characters only

Mail access protocols

SMTP SMTP
mail access

protocol
(e.g., POP,

IMAP)

user
agent

user
agent

 SMTP: delivery/storage to receiver’s server
 mail access protocol: retrieval from server
 POP: Post Office Protocol [RFC 1939]: authorization,

download

sender’s mail
server

receiver’s mail
server

IMAP)

Application Layer 2-67

 IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase
 client commands:

d l

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase, client:
 list: list message numbers

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1

Application Layer 2-68

 retr: retrieve message by
number

 dele: delete
 quit

:
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

18

POP3 (more) and IMAP
more about POP3
 previous example uses

POP3 “download and

IMAP
 keeps all messages in one

place: at serverPOP3 download and
delete” mode
 Bob cannot re-read e-

mail if he changes
client

 POP3 “download-and-
keep”: copies of messages
on different clients

place: at server
 allows user to organize

messages in folders
 keeps user state across

sessions:
 names of folders and

mappings between

Application Layer 2-69

on different clients
 POP3 is stateless across

sessions

message IDs and folder
name

Chapter 2: outline

2.1 principles of network applications
 app architecturesapp architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP

Application Layer 2-70

2.5 DNS
2.6 P2P applications

DNS: domain name system
 Internet-host identifiers
 IP addresses

• unique, universal identifiers, e.g. 74.125.226.50
• Scanning IP address from left to right more and more information about

specific location of host can be obtained
• Difficult to remember

 Symbolic (DNS) names
• Unique user friendly name, e.g. www.google.com
• Easy to remember – preferred by humans
• Provide little information about host location – difficult to aggregate by

Application Layer 2-71

Provide little information about host location difficult to aggregate by
routers

• Consist of variable number of alphanumeric characters – difficult to
process by routers

 DNS enables IP address to Symbolic name translation and vice
versa

Domain Name Label

Application Layer 2-72

19

DNS Names vs. URLs
 DNS name ≠ URL
 Typical URL contains three parts:
URL = protocol + DNS name + pathURL = protocol + DNS name + path

Application Layer 2-73

Elements of DNS
 Distributed database – implemented as a hierarchy

of many name (DNS) servers
 Application-layer protocol – allows hosts to query

distributed databasedistributed database
 Runs over UDP on port 53
 Unlike HTTP, DNS is not an application with which users

directly interact – DNS provides service to other
software

Application Layer 2-74

Root DNS Servers

DNS: a distributed, hierarchical database

… …

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

 3 types of DNS servers – Root DNS server, Top-Level Domain
(TLD) A th it ti DNS

Application Layer 2-75

(TLD) server, Authoritative DNS server
 No single DNS server has all mappings for all hosts – mappings are

divided and distributed across DNS servers

DNS: root name servers

 contacted by local name server that can not resolve name
 root name server:
 contacts authoritative name server if name mapping not known contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

e. NASA Mt View, CA
f I t t S ft C

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

Application Layer 2-76

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

(5 other sites)

g. US DoD Columbus,
OH (5 other sites)

20

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com org net edu aero jobs museums responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
 Network Solutions maintains servers for .com TLD
 Educause for .edu TLD

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s

Application Layer 2-77

authoritative hostname to IP mappings for organization s
named hosts

 can be maintained by organization or service provider

Local DNS name server

 does not strictly belong to hierarchy
 each ISP (residential ISP company university) has  each ISP (residential ISP, company, university) has

one
 also called “default name server”

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)

Application Layer 2-78

pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy

root DNS server

2
3

4
TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for

local DNS server
dns.poly.edu

1

4

5

6

authoritative DNS server

78

wants IP address for
gaia.cs.umass.edu

iterated query:
 contacted server

replies with name of
server to contact

Application Layer 2-79

requesting host
cis.poly.edu

gaia.cs.umass.edu

authoritative DNS server
dns.cs.umass.edu “I don’t know this

name, but ask this
server”

6

3

recursive query:

root DNS server

2
7

DNS name
resolution example

45

 puts burden of name
resolution on
contacted name
server

 heavy load at upper
levels of hierarchy?

local DNS server
dns.poly.edu

1

authoritative DNS server

8

TLD DNS
server

Application Layer 2-80

requesting host
cis.poly.edu

gaia.cs.umass.edu

authoritative DNS server
dns.cs.umass.edu

21

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)
 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

I d l ll TTL

Application Layer 2-81

Internet-wide until all TTLs expire
 update/notify mechanisms proposed IETF standard
 RFC 2136

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

type=NS
 name is domain (e.g.,

yp

type=A
 name is hostname
 value is IP address

type=CNAME
 name is alias name for some

“canonical” (the real) name
 www.ibm.com is really
servereast.backup2.ibm.com

Application Layer 2-82

(g ,
foo.com)

 value is hostname of
authoritative name
server for this domain

 value is canonical name

type=MX
 value is name of mailserver

associated with name

DNS protocol, messages

 query and reply messages, both with same message
format 2 bytes 2 bytes

msg header
 identification: 16 bit # for

query, reply to query uses
same #

 flags:
 query or reply

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

Application Layer 2-83

 recursion desired
 recursion available
 reply is authoritative

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

name, type fields
for a query

RRs in response

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

Application Layer 2-84

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

22

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(N k S l i)(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)
 registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for

Application Layer 2-85

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
 Bombard root servers

Redirect attacks
 Man-in-middle Bombard root servers

with traffic
 Not successful to date
 Traffic Filtering
 Local DNS servers

cache IPs of TLD
servers, allowing root

 Man-in-middle
 Intercept queries

 DNS poisoning
 Send bogus relies to

DNS server, which
caches

Exploit DNS for DDoSg
server bypass

 Bombard TLD servers
 Potentially more

dangerous

Exploit DNS for DDoS
 Send queries with

spoofed source
address: target IP

 Requires amplification
Application Layer 2-86

Chapter 2: outline

2.1 principles of network applications
 app architecturesapp architectures
 app requirements

2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP

Application Layer 2-87

2.5 DNS
2.6 P2P applications

Pure P2P architecture
 no always-on server
 arbitrary end systems

directly communicatey
 peers are intermittently

connected and change IP
addresses

examples:
 file distribution

(BitTorrent)

Application Layer 2-88

(BitTorrent)
 Streaming (KanKan)
 VoIP (Skype)

23

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resourcepeer upload/download capacity is limited resource

us
server

file, size F

us: server upload
capacity

di: peer i download
capacityu2 d2

u1 d1

d

Application Layer 2-89

uN

dN

network (with abundant
bandwidth)

ui: peer i upload
capacity

di

ui

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies: us

F

 time to send one copy: F/us

 time to send N copies: NF/us

 client: each client must
download file copy
 dmin = min client download rate
 min client download time: F/dmin

network

di
ui

Application Layer 2-90

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

File distribution time: P2P

 server transmission: must
upload at least one copy
 time to send one copy: F/us

us

network

F

s

time to distribute F

 client: each client must
download file copy
 min client download time: F/dmin

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + ui

di
ui

Application Layer 2-91

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

… but so does this, as each peer brings service capacity
increases linearly in N …

3 5

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

1

1.5

2

2.5

3

3.5

m
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Application Layer 2-92

0

0.5

1

0 5 10 15 20 25 30 35

N
M

in
im

24

P2P file distribution: BitTorrent

 file divided into 256Kb chunks
 peers in torrent send/receive file chunks

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Application Layer 2-93

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Chapter 2: summary

 application architectures
li

our study of network apps now complete!

 specific protocols:
 client-server
 P2P

 application service
requirements:
 reliability, bandwidth, delay

 Internet transport service
model

i i d

 HTTP
 FTP
 SMTP, POP, IMAP
 DNS
 P2P: BitTorrent

Application Layer 2-94

 connection-oriented,
reliable: TCP

 unreliable, datagrams: UDP

 typical request/reply important themes:

Chapter 2: summary
most importantly: learned about protocols!

yp q p y
message exchange:
 client requests info or

service
 server responds with

data, status code
 message formats:
 headers: fields giving

i f b t d t

important themes:
 centralized vs. decentralized
 stateless vs. stateful
 reliable vs. unreliable msg

transfer
 “complexity at network

Application Layer 2-95

info about data
 data: info being

communicated

edge”

A note on these slides

Computer
Networking: A Top
Down Approach
6th d

Part of PPT slides were adopted from Prof. Natalija
Vlajic’ early CSE3214 course and the rest were
adopted from the book “Computer Networking: A
Top Down Approach” 6th Edition by Jim Kurose and
Keith Ross

Introduction 1-96

6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Keith Ross

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

