CSE 3214: Computer Network
Protocols and Applications

—Application Layer

Dr. Peter Lian, Professor
Department of Computer Science and Engineering
York University
Email: peterlian@cse.yorku.ca
Office: 1012C Lassonde Building

Course website:
http://wiki.cse.yorku.ca/course_archive/2012-
13/Wi13214

Chapter 2: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 electronic mail
= SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

Application Layer 2-2

Chapter 2: application layer

our goals: % learn about protocols by
+ conceptual, examining popular
implementation aspects application-level
of network application protocols
protocols = HTTP
= transport-layer = FTP
service models = SMTP/POP3/IMAP
= client-server * DNS
paradigm « creating network
* peer-to-peer applications
paradigm = socket API

Application Layer 2-3

Some network apps

% e-mail « voice over IP (e.g., Skype)
« web « real-time video

+ text messaging conferencing

+ remote login « social networking

+ P2P file sharing « search

« multi-user network games

« streaming stored video
(YouTube, Hulu, Netflix)

Application Layer 2-4

Creating a network app

write programs that:
« run on (different) end systems -
s+ communicate over network <~

+ e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

+ network-core devices do not
run user applications

+ applications on end systems
allows for rapid app
development, propagation

Application Layer 2-5

Application architectures

possible structure of applications:
« client-server
« peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

gl"-ﬁ-

z ¥

server:

« always-on host

« permanent IP address
« data centers for scaling

clients:
« communicate with server

« may be intermittently
connected

« may have dynamic IP
addresses

+ do not communicate directly
with each other

Application Layer 2-7

P2P architecture

no always-on server

arbitrary end systems
directly communicate

> peers request service from

other peers, provide service
in return to other peers
= self scalability — new
peers bring new service
capacity, as well as new
service demands

» peers are intermittently

connected and change IP
addresses

" complex management

peer-peer

Application Layer 2-8

Processes communicating

process: program running

within a host

within same host, two

processes communicate

using inter-process

communication (defined by

0OS)

« processes in different hosts
communicate by exchanging
messages

clients, servers

client process: process that
initiates communication

server process: process that
waits to be contacted

aside: applications with P2P
architectures have client
processes & server
processes

Application Layer 2-9

Sockets

process sends/receives messages to/from its socket

socket analogous to door

= sending process shoves message out door

= sending process relies on transport infrastructure on
other side of door to deliver message to socket at

receiving process

application

application

socket trolled by
\ ' _;gg Eﬁevee\oger

link Internet
QQ hysical

>~
transport

network controlled
Tink by OS

="

Application Layer 2-10

Addressing processes

> to receive messages,
process must have identifier
> host device has unique 32-
bit IP address
+ Q:does IP address of host
on which process runs
suffice for identifying the
process!
= A: no, many processes
can be running on same
host

identifier includes both IP
address and port numbers
associated with process on
host.

example port numbers:

= HTTP server: 80

= mail server: 25
to send HTTP message to
gaia.cs.umass.edu web
server:

= |Paddress: 128.119.245.12

= port number: 80
more shortly...

Application Layer 2-11

App-layer protocol defines

types of messages
exchanged,
" e.g., request, response
message syntax:
= what fields in messages
& how fields are
delineated
message semantics

= meaning of information
in fields
rules for when and how
processes send & respond
to messages

open protocols:

« defined in RFCs

+ allows for interoperability
« eg, HTTP, SMTP
proprietary protocols:

« e.g., Skype

Application Layer 2-12

What transport service does an app need?

data integrity

- some apps (e.g, file transfer,
web transactions) require
100% reliable data transfer

other apps (e.g., audio) can
tolerate some loss

timing

« some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

< some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

other apps (“elastic apps”)
make use of whatever
throughput they get

security
< encryption, data integrity,

Application Layer 2-13

Transport service requirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

reai-time audio/video ioss-toierant audio: 5kbps-1Mbps yes, 100’ s
video:10kbps-5Mbps msec
stored audio/video loss-tolerant same as above
interactive games loss-tolerant few kbps up yes, few secs
text messaging no loss elastic yes, 100" s
msec
yes and no

Application Layer 2-14

Internet transport protocols services

TCP service:

reliable transport between
sending and receiving
process

flow control: sender won’ t
overwhelm receiver
congestion control: throttle
sender when network
overloaded

« does not provide: timing,
minimum throughput
guarantee, security
connection-oriented: setup

required between client and

server processes

UDP service:

< unreliable data transfer
between sending and
receiving process

« does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-15

Internet apps: application, transport protocols

application underlying
application layer protocol transport protocol

e-mail SMTP [RFC 2821] TCP

remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP

file transfer FTP [RFC 959] TCP

streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony ~ SIP, RTP, proprietary
(e.9., Skype)

TCP or UDP

Application Layer 2-16

Securing TCP

TCP & UDP
% Nno encryption
« cleartext passwds sent

into socket traverse
Internet in cleartext

SSL

« provides encrypted
TCP connection

« data integrity
+ end-point
authentication

SSL is at app layer
« Apps use SSL libraries,

which “talk” to TCP

SSL socket API
« cleartext passwds sent

into socket traverse
Internet encrypted

Application Layer 2-17

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application Layer 2-18

Web and HTTP

First, a review...

+ web page consists of objects

+ object can be HTML file, JPEG image, Java applet,

audio file,...

+ web page consists of base HTML-file which
includes several referenced objects
« each object is addressable by a URL, e.g.,

www . someschool .edu/someDept/pic.gif

host name

path name

Application Layer 2-19

HTTP overview

HTTP: hypertext
transfer protocol

+« Web’ s application layer i
protocol PC running

+ client/server model Firefox browser

= client: browser that
requests, receives,

(using HTTP protocol)
zrgijec;:lslsplays Web rsuer:.:;rg

Apache Web
server

server: Web server
sends (using HTTP
protocol) objects in iphone running
response to requests Safari browser

Application Layer 2-20

HTTP overview (continued)

uses TCP:

+ client initiates TCP
connection (creates
socket) to server, port 80

« server accepts TCP

connection from client

HTTP messages

(application-layer protocol

messages) exchanged

between browser (HTTP
client) and Web server

(HTTP server)

« TCP connection closed

———————————————.as
protocols that maintain

HTTPis ‘stateless ”

% server maintains no
information about
past client requests

ide
« ”
state” are complex!

% past history (state) must be
maintained

» if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

Application Layer 2-21

HTTP connections

non-persistent HTTP

«

persistent HTTP
¢+ at most one object « multiple objects can
sent over TCP be sent over single
connection TCP connection
= connection then between client, server
closed

+ downloading multiple
objects required
multiple connections

Application Layer 2-22

Non-persistent HTTP

suppose user enters URL:

(contains text,

www . someSchool .edu/someDepartment/home. index references to 10

la. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2.HTTP client sends HTTP request

message (containing URL) into

wants object
someDepartment/home.index

time

jpeg images)

Ib.HTTP server at host

www.someSchool.edu waiting

~ for TCP connection at port 80.

“accepts” connection, notifying
client

.HTTP server receives request

TCP connection socket. 3
Message indicates that client

message, forms response
message containing requested
object, and sends message into
its socket

Application Layer 2-23

Non-persistent HTTP (cont.)

/ 4, HTTP server closes TCP

connection.
5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

time

6.Steps |-5 repeated for each of
10 jpeg objects

Application Layer 2-24

Non-persistent HTTP: response time

RTT (Round-trip time): time

for a small packet to travel |

from client to server and Q Hﬂ
back initiate TCP

HTTP response time: connection ~ 7
initi RTT! \.

« one RTT to initiate TCP —
connection request [,—

file
+ one RTT for HTTP request time to
and first few bytes of HTTP RTT{ >};Irgnsm
file —!

response to return

+ file transmission time received
« non-persistent HTTP N i
response time = time time
2RTTH+ file transmission
time

Application Layer 2-25

Persistent HTTP

non-pers:stent HTTP issues: persistent HTTP:

+ requires 2 RTTs per object +« server leaves connection
+ OS overhead for each TCP open after sending
connection response
= browsers often open « subsequent HTTP
SNl TOD ai qcei e messages between same
Pdl anei 1 er LUlllchLlUll) """"'"‘ =T LYY LTI S
to fetch referenced objects client/server sent over

open connection

+ client sends requests as
soon as it encounters a
referenced object

« as little as one RTT for all
the referenced objects

Application Layer 2-26

Persistent HTTP Connection

+ 2 versions
= Without pipelining — HTTP client

issues a new request only when the | —

previous response/object has been
received.

refrioval lime per obiject = RTT + transmission li'mu-I

With pipelining — HTTP client issues —
a request as soon as it encounters a L }
reference o

one RTT loralloh]eclsl

Application Layer 2-27

Non-Persistent vs. Persistent: Example

« Assume a Web page consists of | base HTML page
and 10 images (each of size L bits). Data rate on the
link is R bps. What is the overall retrieval time in case
of:

(a) non-persistent HTTP:

(b) persistent HTTP with pipeline:

Application Layer 2-28

HTTP message format

Hesparse mesage

ayer2-29

HTTP Request Message

<+ From client to server
+ General format

method |sp| URL |sp| version |cr| If | request line
header field name: |Sp|value cr| If
header
lines
header field name: |Sp|va|ue |cr | If
cr | If | ablank line
body E body

Application Layer 2-30

Methods

% 3 methods in HTTP/1.0: GET, POST, HEAD
< Additional 2 methods in HTTP/I.I: PUT,
DELETE

= GET - retrieves a document specified in the URL
field from server

= HEAD — get some information about document
but not document itself

= POST — provides some information for server, e.g.
input to server when fills a form

= PUT — uploads file in entity body to path specified
in URL field

= DELETE — deletes file specified in the URL field

Application Layer 2-31

HTTP request message example

carriage return character

" line-feed character

request line /

(GET,POST, GET /index.html HTTP/1.1\r\h

HEAD commands) Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

head Accept: text/html,application/xhtml+xmI\r\n

e"fl er Accept-Language: en-us,en;q=0.5\r\n

lines | Accept-Encoding: gzip,deflate\r\n

Accept-Charset: 1S0-8859-1,utf-8;9=0.7\r\n

carriage return, Keep-Alive: 115\r\n
line feed at start Connection: keep-alive\r\n

M —\r\
of line indicates ; mn

end of header lines

empty
body

Application Layer 2-32

HTTP Response Message

<+ From server to client
+ General format

version|sp| status code |sp| phrase I cr | If I request line
header field name: |SP|value | cr | If
] | header
7 T lines
header field name: |Sp|value I cr I If
or | if | ablank line
L body E body

Application Layer 2-33

HTTP response status codes

< status code is 3-digit integer that indicates the
response to a received request; status phrase
gives short textual explanation of the status
code

200 OK
request succeeded, requested object later in this msg
301 Moved Permanently

requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

request msg not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Application Layer 2-34

HTTP Response Message Example

status line

(protocol
o T HTTP/1.1 200 OK\F\n

status code D S 26 S 2010 20:09:20 GMT\r\i
ate: Sun, ep 109: r\n

status phrase) Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
header ETag: "'17dc6-a5c-bf716880"\r\n
lines Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=1S0-8859-

I\r\n
\r\n
data, e_g_’/data data data data data ...

requested
HTML file

Application Layer 2-35

HTTP messaging example

Client

Request (GET method)
CET heseflinfimasna’ 1 LT 8
CET JussBintmagel HTTIVLL
Accept: imagerpil
Jwcepl: image/jpeg
Response

HTTR/1.1 200 OK

Date: Mon, 07-Jan-02 13:15:14 GMT
Server: Challenger

MIME-versian: 1.0

Content-length: 2048

(Baudy aof il document)

Application Layer 2-36

HTTP Headers

+ Exchange additional information between the
client and the server

[header field name: [sp[value [ecr i |

+ General Header — gives general information about
the message and can be present in both a request

cache-control Specifies info about caching
connection Specifies whether connection should be
closed or not
date Shows the date and time at which the

message originated
MIME-version Shows the MIME version used

Application Layer 2-37

HTTP Request Headers

« REQUEST HEADER - can be present only in a request
message — it specifies the client’s configuration and the
client’s preferred document format

Header Description

accept Shows the media format the client can accept

accept-language Shows the language the client can accept

host Specifies the Internet host of the requested
resource
if-modified-since Send the document if newer than specified
date
user-agent Identifies the client program

Application Layer 2-38

HTTP Response Header

« RESPONSE HEADER — can be present only in a response
message — it specifies the server’s configuration and
special information about the request

eade De ptio
public Shows the list of HTTP methods supported by
this server
retry-after Shows how long the service is expected be
unavailable
server Shows the server name and version number
set-cookie Define a name - value pair associated with this
URL

Application Layer 2-39

HTTP Entity Header

« ENTITY HEADER - gives information about the body of
the document/message — mostly present in response
message

Header Description

content-encoding Specifies the encoding scheme

content-language Specifies the language

content-length Shows the length of the document

content-type Specifies the media type

expires Gives the date and time when contents may
change

location Specifies the location of the created or moved
document

Application Layer 2-40

Trying out HTTP (client side) for yourself

|. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cse website.
anything typed in sent

to port 80 at www.cse.yorku.ca

telnet www.cse.yorku.ca 80

2. type in a GET HTTP request:

GET /cshome/index.html HTTP/1.1 | PYtyping this in (hit carriage

Host: www.cse.yorku.ca return twice), you send
this minimal (but complete)

GET request to HTTP server
3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)
Application Layer 2-41

Trying out HTTP (client side) for yourself

7 eleliany — ha

Aph tRlnes W reegerkies £3

138 CAT
DAV/Z Wod_ss1/2.2,22 OpensSLil.dube PHF/S. 2,17

cunbenbe"Lenlfhinl: charsxlmull B%s

cmata name santent Wrark Undusretrgts

el remce GENERATON® Lontc aloming WobPal/THE e, pulosincapa. com™s

ng - Welenes - Home

Application Layer 2-42

Cookie

« HTTP is a stateless protocol — server forgets
about each client as soon as it delivers
response

= Stateless behavior is an issue when:
« Server wants to have accurate count of site visitors
« Server wants to restrict user access, etc.

* Server wants to personalize pages for each client, or
remember selections they made

+ Cookie Technology allows site to keep track of
users

= A cookie is a short piece of data, not code. It is not an

executable program and cannot directly harm the machine
Application Layer 2-43

User-server state

many Web sites use cookies example:
four components: « Susan always access
1) For new user, server adds Internet from PC
Set-Cookie header to its « visits specific e-
response with an commerce site for
identifier first time
2) Client stores the ID ina + when initial HTTP
cookie file kept on its disk requests arrives at
and managed by user’ s site, site creates:
browser = unique ID
3) Back-end database keeps * entry in backend

the ID on server database for ID

4) Client uses the ID in all

subsequent requests Application Layer 2-44

Cookies: keeping “state”

client a: z ﬂ server
734
usual http request msg Amazon server

cookie file creates ID

usual http response S backend
a e 1678 for user create Packen
ebay 8734 set-cookie: 1678 entry_database
lamazon 1678 S
usual http request msg .
cookie: 1678 cookie- ‘}:cess/v

specific

usual http response msg action
one week later: /

access

ebay 8734 usual http request msg .
amazon 1678 cookie: 1678 COOk_'?-

specific

usual http response msg action

Application Layer 2-45

Cookies Example

o
Application Layer 2-46

Issues with Cookies

what cookies can be used cookies and privacy: aside
for:

« authorization

« shopping carts

« recommendations

« user session state (Web
e-mail) J

% cookies permit sites to
learn a lot about you

% you may supply name and
e-mail to sites

Issues with cookies:

< Undesirable cookies: any server can set a
cookie for any reason. User may not even
be informed that this is happening

Application Layer 2-47

Web caches (proxy server)

goal: satisfy client request without involving origin server

« user sets browser: Web
accesses via cache

« browser sends all HTTP : proxy
requests to cache \ . server W&} h

® object in cache: cache dlient™775 "l o ongin
returns object W server
else cache requests &Q\F‘s\ A sl

object from origin % I

server, then returns ﬂ&\,\@?‘

object to client

client origin

server

Application Layer 2-48

More about Web caching

+ cache acts as both why Web caching?
client and server « reduce response time
* server for original for client request
requesting client
= client to origin server % reduce trafﬁc on an
+ typically cache is institution s access link
installed by ISP « Internet dense with
. . “ ”
(university, company, caches: enables “poor
residential ISP) content providers to

effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-49

Caching example:

origin
servers
assumptions:
> avg object size: | 00K bits
avg request rate from browsers to origin
servers:|5/sec 15 Mbps
RTT from institutional router to any access link

origin server: 2 sec

access linl rate: 15 Mhne
fink rate: 15 Mbps

consequences:

LAN traffic
intensity=(15req/s*|Mb/req)/100Mbps
=0.15
> WAN traffic problem!
intensity=(|5req/s*TMb/req)/ | 5Mbps=
> total delay = Internet delay + access
delay + LAN delay
= 2 sec + minutes + msecs

Application Layer 2-50

Caching example: fatter access link

assumptions:

+ avg object size: | Mbits

+ avg request rate from browsers to
origin servers:|5/sec
RTT from institutional router to any
origin server: 2 sec

« access link rate: T5Mbps-,.

100Mbps
consequences: P ToMBRS_
« LANTI=0.I5 access link
+ WANTI =~ 0.15 itut

<+ total delay = Internet delay + access
delay + LAN delay

= 2sec +W msecs

msecs

origin
servers

100 Mbps

Cost: increased access link speed (not cheap!)

Application Layer 2-51

Caching example: install local cache

assumptions:
« avg object size: | Mbits

% avg request rate from browsers to
origin servers:|5/sec

RTT from institutional router to any
origin server: 2 sec

access link rate: 15 Mbps

origin
servers

consequences: 15Mbps
LANTI:0.15 access link
access link utilization = | insti =t
total delay = ? LAN

| web

How to compute link che

utilization, delay?

Cost: web cache (cheap!)

Application Layer 2-52

Caching example: install local cache

Calculating access link
utilization, delay with cache:

+« suppose cache hit rate is
0.4(typical 0.2~0.7)

= 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

«access link utilization:

= 60% of requests use access link
+ data rate to browsers over access link 15 Mbps
= 0.6*15req/s*IMbps = 9 Mbps access link
= TI=9/15=.6

« total delay
= =0.6 * (delay from origin servers) +0.4
* (delay when satisfied at cache)
= =0.6 (201) + 0.4 (~msecs)
= =~ |2secs
= less than with 100 Mbps link (and
cheaper too!)

Application Layer 2-53

Web Cache Challenge

« Goal: do not send object lient

if cache has up-to-date *'€" Q server
cached version

« What if cached data is

HTTP request msg bi
changed? If-modified-since: <date> object

. age not
Solution: use conditional

i " modified

GET in HTTP message o HTLF;_I[?{’S"SS before

If-modified-since: 304 Not Modified <date>
<date>

SErver: response CONtains ~ =—=---===-=====-————---
no object if cached copy

is up-to-date: HTTP request msg
HTTP/1.0 304 Not If-modified-since: <date> object

Modified modified
HTTPresponse [after
< HTTP/L.0 200 OK <date>
<data>

Application Layer 2-54

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP

23 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application Layer 2-55

FTP: the file transfer protocol

file transfer
@‘f AN :—sr; FTP FTP
Y . client
J“ interface Seiver

user -)
at host f . remote file
local file system
system

+ transfer file to/from remote host

+ client/server model
= client: side that initiates transfer (either to/from remote)
= server: remote host

« ftp: RFC 959

« ftp server: port 21

Application Layer 2-56

FTP: separate control, data connections

« FTP client contacts FTP server TCP control pcg,g’ﬁd""”v
at port 21, using TCP : Z<—>H
+ client au'thorlzed over control TCP data connection,

connection FTP —server port 20 FTP

. client server
+ client browses remote

directory, sends commands
over control connection « server opens another TCP

data connection to transfer
another file

<+ when server receives file
transfer command, such as get .
or put, server opens 2 TCP * FTP server maintains

« W .
data connection (for file) to state”: current directory,
client earlier authentication

+ after transferring one file,
server closes data connection

Application Layer 2-57

FTP commands

sample commands:

< asc - sent as ASCII
text over control
channel

« bin — sent as binary * cd prism
s Is — list of file = get indexhtml
+ cd — change directory = put myfile
« get filename —
retrieves a file from
remote host
« put filename stores
file onto remote host

%+ ye - quit

+ Examples
= ftp my@cse.yorku.ca
= |s—al

Application Layer 2-58

FTP Example

" eleliany — flp — 102x31

Yang-MacBook-ALi~ aleliany$ Ttp peterlianfcse. yorku.ca
Lonmecied Lo Lue, yUrkd.Ld,

22B-York University Desartsent oF Lomputer Scisnce and Lagineering FIF Server
28 FTP Swrver -wacy.

331 Password required (o pelerLan

frpe A price
258 [al eommand surcrsiful

fepe 11 oal
219 Entering Extenced “assive Mede [|]]43956))

1SR Gpentnn ASCTT sode @ata canmectins for 110
drex——— 2 peterlisn fac 4136 Dec 1

drex x x4 peterliim faculty 4806 Jan B 12
—ragememem 1 patarlaen fasulty ALTIE
216 Transfer complete

219 Dntering Catenced Fassive Mote [|]]4828])

138 Upenzng WIMARY mods data consection for .cshro (1848 bvtes)
80 | Tesp 1.1 MBS DEBIER LIA

236 Tramlur complate
1818 bytes receivec in PHBR (Li.L3 Kbz}

Application Layer 2-59

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application Layer 2-60

10

[outgoing

message queue

Electronic mail

0 user mailbox

Three major components:
user agents
mail servers

simple mail transfer
protocol: SMTP

ser Agent

ak.a. “mail reader”
composing, editing, reading
mail messages

e.g.,, Outlook, Thunderbird,
iPhone mail client
outgoing, incoming
messages stored on server

Application Layer 2-61

Electronic mail: mail servers

mail servers:
+ mailbox contains incoming
messages for user
« message queue of outgoing
(to be sent) mail messages
s+ SMTP protocol between
mail servers to send email
messages
= client: sending mail
server
= “server”: receiving mail
server

Application Layer 2-62

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from
client to server, port 25
+ direct transfer: sending server to receiving
server

+ three phases of transfer

= handshaking (greeting)

= transfer of messages

= closure

command/response interaction (like HTTP, FTP)
= commands: ASCII text

= response: status code and phrase

messages must be in 7-bit ASCI

R

<&

R

Application Layer 2-63

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice’ s

message “to message over the TCP
bob@someschool . edu connection
2) Alice’ s UA sends message 5) Bob’ s mail server places the
to her mail server; message message in Bob’ s mailbox
placed in message queue 6) Bob invokes his user agent
3) client side of SMTP opens to read message
TCP connection with Bob’ s
mail server

Alice’ s mail server Bob’ s mail server

Application Layer 2-64

Sample SMTP interaction

S-SMTP server, C-SMTP client

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?
C: How about pickles?

C: .
S: 250 Message accepted for delivery
C: QUIT

S: 221 hamburger.edu closing connection
Application Layer 2-65

Mail message format

SMTP: protocol for
exchanging email msgs ,. blank
RFC 822: standard for text ~— Jine
message format:
« header lines, e.g., B
= To: body
= From:
= Subject:
different from SMTP MAIL
FROM, RCPT T
commands!
+ Body: the “message”
= ASCII characters only

Application Layer 2-66

11

Mail access protocols

mail access

protocol

(e.g., POP,
IMAP)

sender’s mail receiver’ s mail
server server

= POP: Post Office Protocol [RFC 1939]: authorization,
download

= |MAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

= HTTP: gmail, Hotmail, Yahoo! Mail, etc.

Application Layer 2-67

POP3 protocol

S: +0K POP3 server ready
C: user bob
authorization phase — | 3 *0K

C: pass hungry

¢ client commands: 1 +OK user successfully logged on

= user: declare username

® pass: password C list
% server responses ; g?g
= +0K St .
= -ERR C: retr 1
transaction phase, die)t;/' <message 1 contents>
« Dist: list message numbers C Eiele 1
« retr: retrieve message by C: retr 2
number : <message 1 contents>
dele: delete S: .
+ quit C: dele 2

C: quit
S: +OK POP3 server signing off

Application Layer 2-68

POP3 (more) and IMAP

more about POP3 IMAP
+ previous example uses « keeps all messages in one
POP3 “download and place: at server
”
delete” mode + allows user to organize
= Bob cannot re-read e- messages in folders
mail if he changes .

« keeps user state across
sessions:
= names of folders and
mappings between
message |IDs and folder
<+ POP3 is stateless across name
sessions

client

« POP3 “download-and-
keep”: copies of messages
on different clients

Application Layer 2-69

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application Layer 2-70

DNS: domain name system

+ Internet-host identifiers
= |P addresses
* unique, universal identifiers, e.g. 74.125.226.50

« Scanning IP address from left to right more and more information about
specific location of host can be obtained

« Difficult to remember
= Symbolic (DNS) names

Unique user friendly name, e.g. www.google.com

Easy to remember — preferred by humans

Provide little information about host location — difficult to aggregate by
routers

Consist of variable number of alphanumeric characters — difficult to
process by routers

« DNS enables IP address to Symbolic name translation and vice
versa

Application Layer 2-71

Domain Name Label

Label Description

acro Airlines and acrospace companics
biz Businesses or firms (similar to “com”)
com Commercial organizations

coop Cooperative business organizations
edu Educational institutions

gov Government institutions

info Information service providers

int International organizations

mil Military groups

museum Museums and other non-profit orga
name Personal names (individuals)

net Network support centers

org Nonprofit organizations

pro Professional individual organizations

Application Layer 2-72

12

DNS Names vs. URLs

« DNS name # URL
= Typical URL contains three parts:
URL = protocol + DNS name + path

http://www.cs.yorku.ca/course/4213/index.html

[Shmp——— E——
protocol DNS name of Server machine path
: —
IP address host specific
- .

both must be globally unique
[mapping from one to another done by DNS)

Application Layer 2-73

Elements of DNS

« Distributed database — implemented as a hierarchy
of many name (DNS) servers
« Application-layer protocol — allows hosts to query
distributed database
= Runs over UDP on port 53

= Unlike HTTP, DNS is not an application with which users
directly interact — DNS provides service to other

User
T Host
name
Host
_ name
Applscation File d NS
Applrcation transfier NS DS
layer elient client seever
oy
T TP address] .
oo} |
IP address 9
Response
Transport layer ayer2-74

DNS: a distributed, hierarchical database

edu DNS servers |

org DNS servers
f

com DNS servers

pbs.org poly.edi umass-édu

ahoo.com
y amazon.com DNS servers DNS serversDNS servers

DNS servers _ DNS servers

> 3 types of DNS servers — Root DNS server, Top-Level Domain
(TLD) server, Authoritative DNS server

> No single DNS server has all mappings for all hosts — mappings are
divided and distributed across DNS servers

Application Layer 2-75

DNS: root name servers

« contacted by local name server that can not resolve name

% root name server:
= contacts authoritative name server if name mapping not known
= gets mapping
= returns mapping to local name server

. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD

. ARL Aberdeen, MD
- Versign,Dules VA (69 oher s) i Netnod, Stocknoim (37 oher sites)
. NASA Mt View, CA - m. WIDE Tokyo
. nternet Software C. . (5 other sites)
Palo Al A (and 48 olher /

stes) —

. Versin, Lo mngols ¢4~ 13 root name
s other st

b, GSC161 W del ey, CA servers

I ICANN Los Angeles, CA iy worldwide
(@ other stes)

k. RIPE London (17 other sites)

. US DoD Columbus,
OH (5 other sites)

Application Layer 2-76

TLD, authoritative servers

top-level domain (TLD) servers:
= responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp
= Network Solutions maintains servers for .com TLD
= Educause for .edu TLD

authoritative DNS servers:

* organization’ s own DNS server(s), providing
authoritative hostname to IP mappings for organization’ s
named hosts

= can be maintained by organization or service provider

Application Layer 2-77

Local DNS name server

« does not strictly belong to hierarchy
« each ISP (residential ISP, company, university) has
one
* also called “default name server”
« when host makes DNS query, query is sent to its
local DNS server

= has local cache of recent name-to-address translation
pairs (but may be out of date!)

= acts as proxy, forwards query into hierarchy

Application Layer 2-78

13

DNS name root DNS server
resolution example Hﬁ

+ host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

TLD DNS server

iterated query:

dns.poly.edu
% contacted server 7\\6 Hﬁ

replies with name of e

server to contact /

% “l don’ t know this

name, but ask this requesting host
server” cis.poly.edu

authoritative DNS server
dns.cs.umass.edu

gaia.cs.umass.edu

Application Layer 2-79

3

*

R

DNS name root DNS server

resolution example
puts burden of name Hﬂ TLD DNS
resolution on server
server dns.poly.edu 5 H 4

heavy load at upper 1‘ l 8 ﬁ

Y. N
recursive query: / x
d ti
contacted name local DNS server
levels of hierarchy?

%

R

authoritative DNS server
dns.cs.umass.edu

requesting host
cis.poly.edu

gaia.cs.umass.edu

Application Layer 2-80

DNS: caching, updating records

% once (any) name server learns mapping, it caches
mapping
= cache entries timeout (disappear) after some time (TTL)
= TLD servers typically cached in local name servers
* thus root name servers not often visited
+ cached entries may be out-of-date (best effort
name-to-address translation!)

= if name host changes IP address, may not be known
Internet-wide until all TTLs expire

« update/notify mechanisms proposed |IETF standard
= RFC 2136

Application Layer 2-81

DNS records

DNS: distributed db storing resource records (RR)

| RR format: (name, value, type, ttl) |

type=A type=CNAME
= name is hostname name is alias name for some
= value is IP address “canonical” (the real) name

t}gge=NS = www.ibm.com is really

name is domain (e.g. servereast.backup2.ibm.com

foo.com) = value is canonical name
= value is hostname of
authoritative name txpe=MX

server for this domain . .
V! s = value is name of mailserver

associated with name

Application Layer 2-82

DNS protocol, messages

« query and reply messages, both with same message
format

«—— 2bytes —>«—— 2bytes ——

msg header identification flags

+ identification: 16 bit # for # ions # answer RRs
query, reply to query uses # authority RRs | # additional RRs
same #

% flags: questions (variable # of questions)

query or reply

recursion desired answers (variable # of RRs)

recursion available
authority (variable # of RRs)

reply is authoritative

additional info (variable # of RRs)

Application Layer 2-83

DNS protocol, messages

«—— 2bytes —>«—— 2bytes ——

identification flags

questions # answer RRs

authority RRs | # additional RRs

name, type fields

for a query t— questions (variable # of questions)

RRs in response

| answers (variable # of RRs)
to query

records for

authoritative servers — authority (variable # of RRs)

. additional “helpful” ______ | qditionalinfo (variable # of RRs)
info that may be used

Application Layer 2-84

14

Inserting records into DNS

+ example: new startup “Network Utopia”

+ register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
= provide names, IP addresses of authoritative name server
(primary and secondary)
= registrar inserts two RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)
+ create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-85

Attacking DNS

DDoS attacks Redirect attacks
+ Bombard root servers < Man-in-middle
with traffic * Intercept queries
= Not successful to date o DNS poisoning
= Traffic Filtering = Send bogus relies to

Local DNS servers DNS server, which
cache IPs of TLD caches

servers, allowing root Exploit DNS for DDoS

server bypass) -
+ Bombard TLD servers * Send queries with
spoofed source

= Potentially more]
dangerous addr?ss, targeF IP .
+ Requires amplification

Application Layer 2-86

Chapter 2: outline

2.1 principles of network applications
= app architectures
= app requirements

2.2 Web and HTTP

23 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

Application Layer 2-87

Pure P2P architecture

+ no always-on server

« arbitrary end systems
directly communicate

% peers are intermittently
connected and change IP
addresses

examples:
= file distribution
(BitTorrent)

= Streaming (KanKan)
= VolP (Skype)

Application Layer 2-88

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
= peer upload/download capacity is limited resource

ug: server upload
capacity E z r
[| - J
¥ T e

| d;: peer i download
capacity

network (with abundant g_
bandwidth) \

u;: peer i upload
capacity

Application Layer 2-89

File distribution time: client-server

+ server transmission: must
sequentially send (upload) N
file copies:

= time to send one copy: F/u,

13

= time to send N copies: NF/u

\

« client: each client must)
download file copy g
= d_,;, = min client download rate
= min client download time: F/d

ey ®

'min

time to distribute F

toNdlientsusing D >ma x{NF/uS', F/d..i.}

client-server approach

increases linearly in N

Application Layer 2-90

15

File distribution time: P2P

« Server transmission: must
upload at least one copy
= time to send one copy: Flu,
+ client: each client must

download file copy ‘g _g

= min client download time: F/d

'min
« clients: as aggregate must download NF bits

= max upload rate (limting max download rate) is u; + Zu;

time to distribute F

to N clients using DP2P > max{F/uS’,F/d

min,lNF/(us + 2ui)}
P2P approach

increases linearly in N ...
... but so does this, as each peer brings service capacity

Application Layer 2-91

Client-server vs. P2P: example

client upload rate = u, F/u=1hour, ug=10u, d,;, 2 U

Minimum Distribution Time

Application Layer 2-92

P2P file distribution: BitTorrent

+ file divided into 256Kb chunks
< peers in torrent send/receive file chunks

torrent: group of peers
exchanging chunks of a file

tracker: tracks peers
participating in torrent

Alice arrives ...
... obtains list
of peers from tracker

... and begins exchanging Q\ /
file chunks with peers in torrent g/’

Application Layer 2-93

Chapter 2: summary

our study of network apps now complete!

« application architectures % specific protocols:
= client-server « HTTP
= P2P

« application service = FTP

requirements:
= reliability, bandwidth, delay

« Internet transport service
model

= SMTP,POP, IMAP
= DNS
= P2P:BitTorrent

= connection-oriented,
reliable: TCP

= unreliable, datagrams: UDP

Application Layer 2-94

Chapter 2: summary

most importantly: learned about protocols!

« typical request/reply

) important themes:
message exchange:

* client requests info or < centralized vs. decentralized
service . < stateless vs. stateful
= server responds with) .
data, status code % reliable vs. unreliable msg
+ message formats: transfer
® headers: fields giving + “complexity at network

info about data

= data: info bein,
communicate:

edge”

Application Layer 2-95

A note on these slides

Part of PPT slides were adopted from Prof. Natalija

Vlajic’ early CSE3214 course and the rest were Compmer

adopted from the book “Computer Networking: A Networking:A Top
Top Down Approach” 6t Edition by Jim Kurose and Down APPFOGCh
Keith Ross 6t edition

Jim Kurose, Keith Ross
Addison-Wesley
March 2012

@

All material copyright 1996-2012

J.F Kurose and K.W. Ross, All Rights Reserved Introduction 1-96

16

