
1

CSE 3214: Computer Network
Protocols and Applications

−Application Layer

Dr. Peter Lian, Professor
Department of Computer Science and Engineering

York University
Email: peterlian@cse.yorku.ca

Office: 1012C Lassonde Building
Course website:

http://wiki.cse.yorku.ca/course_archive/2012-
13/W/3214

Chapter 2: outline

2.1 principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 electronic mail

Application Layer 2-2

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

Chapter 2: application layer

our goals:
 conceptual,

implementation aspects
of network application
protocols
 transport-layer

 learn about protocols by
examining popular
application-level
protocols
 HTTP
 FTP

Application Layer 2-3

p y
service models

 client-server
paradigm

 peer-to-peer
paradigm

 SMTP / POP3 / IMAP
 DNS

 creating network
applications
 socket API

Some network apps

 e-mail
 web
 text messaging
 remote login
 P2P file sharing

 voice over IP (e.g., Skype)
 real-time video

conferencing
 social networking
 search

Application Layer 2-4

 P2P file sharing
 multi-user network games
 streaming stored video

(YouTube, Hulu, Netflix)

 …
 …

Creating a network app
write programs that:
 run on (different) end systems
 communicate over network
 e.g., web server software

communicates with browser
software

application
transport
network
data link
physical

Application Layer 2-5

no need to write software for
network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

possible structure of applications:
 client-server
 peer-to-peer (P2P)

Application Layer 2-6

2

Client-server architecture

server:
 always-on host
 permanent IP address
 data centers for scaling

clients:

Application Layer 2-7

clients:
 communicate with server
 may be intermittently

connected
 may have dynamic IP

addresses
 do not communicate directly

with each other

client/server

P2P architecture
 no always-on server
 arbitrary end systems

directly communicate
 peers request service from

other peers, provide service
in return to other peers

peer-peer

Application Layer 2-8

 self scalability – new
peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses
 complex management

Processes communicating

process: program running
within a host

 within same host, two
processes communicate
using inter-process
communication (defined by

client process: process that
initiates communication

server process: process that
waits to be contacted

clients, servers

Application Layer 2-9

communication (defined by
OS)

 processes in different hosts
communicate by exchanging
messages

 aside: applications with P2P
architectures have client
processes & server
processes

Sockets
 process sends/receives messages to/from its socket
 socket analogous to door
 sending process shoves message out door
 sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Application Layer 2-10

Internet

controlled
by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-
bit IP address

 Q: does IP address of host
on which process runs

 identifier includes both IP
address and port numbers
associated with process on
host.

 example port numbers:
 HTTP server: 80

Application Layer 2-11

suffice for identifying the
process?

 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12
 port number: 80

 more shortly…

 A: no, many processes
can be running on same
host

App-layer protocol defines
 types of messages

exchanged,
 e.g., request, response

 message syntax:
 what fields in messages

& how fields are

open protocols:
 defined in RFCs
 allows for interoperability
 e.g., HTTP, SMTP
proprietary protocols:

 Sk

Application Layer 2-12

& how fields are
delineated

 message semantics
 meaning of information

in fields
 rules for when and how

processes send & respond
to messages

 e.g., Skype

3

What transport service does an app need?

data integrity
 some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

throughput
 some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

 th (“ l ti ”)

Application Layer 2-13

timing
 some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

 other apps (elastic apps)
make use of whatever
throughput they get

security
 encryption, data integrity,

…

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
l ti di / id

data loss

no loss
no loss
no loss
l t l t

throughput

elastic
elastic
elastic

di 5kb 1Mb

time sensitive

no
no
no

100’

Application Layer 2-14

real-time audio/video

stored audio/video
interactive games

text messaging

loss-tolerant

loss-tolerant
loss-tolerant
no loss

audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Internet transport protocols services

TCP service:
 reliable transport between

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
reliability flow control

Application Layer 2-15

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
fil t f

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]

underlying
transport protocol

TCP
TCP
TCP
TCP

Application Layer 2-16

file transfer
streaming multimedia

Internet telephony

FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

TCP
TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP
 no encryption
 cleartext passwds sent

into socket traverse
Internet in cleartext

SSL is at app layer
 Apps use SSL libraries,

which “talk” to TCP
SSL socket API

l d Internet in cleartext
SSL
 provides encrypted

TCP connection
 data integrity
 end-point

authentication

 cleartext passwds sent
into socket traverse
Internet encrypted

Application Layer 2-17

Chapter 2: outline

2.1 principles of network applications
 app architectures
 app requirements

2.2 Web and HTTP
2 3 FTP

Application Layer 2-18

2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

4

Web and HTTP

First, a review…
 web page consists of objects
 object can be HTML file, JPEG image, Java applet,

audio file,…
 web page consists of base HTML-file which

Application Layer 2-19

 web page consists of base HTML file which
includes several referenced objects

 each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

PC running
Firefox browser

Application Layer 2-20

c e t:
requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

server
running

Apache Web
server

iphone running
Safari browser

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

HTTP is “stateless”
 server maintains no

information about
past client requests

aside

Application Layer 2-21

connection from client
 HTTP messages

(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

protocols that maintain
“state” are complex!

 past history (state) must be
maintained

 if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP connections

non-persistent HTTP
 at most one object

sent over TCP
connection
 connection then

persistent HTTP
 multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-22

 connection then
closed

 downloading multiple
objects required
multiple connections

between client, server

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-23

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

p
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

4. HTTP server closes TCP
connection.

Application Layer 2-24

6. Steps 1-5 repeated for each of
10 jpeg objects

time

5

Non-persistent HTTP: response time

RTT (Round-trip time): time
for a small packet to travel
from client to server and
back

HTTP response time:
 one RTT to initiate TCP

connection

initiate TCP
connection

RTT

request

Application Layer 2-25

connection
 one RTT for HTTP request

and first few bytes of HTTP
response to return

 file transmission time
 non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

request
file

RTT

file
received

time time

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object
 OS overhead for each TCP

connection
 browsers often open

parallel TCP connections

persistent HTTP:
 server leaves connection

open after sending
response

 subsequent HTTP
messages between same

Application Layer 2-26

parallel TCP connections
to fetch referenced objects

messages between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Persistent HTTP Connection

 2 versions
 Without pipelining – HTTP client

issues a new request only when the
previous response/object has been
received.

 With pipelining – HTTP client issues
a request as soon as it encounters a
reference

Application Layer 2-27

Non-Persistent vs. Persistent: Example

 Assume a Web page consists of 1 base HTML page
and 10 images (each of size L bits). Data rate on the
link is R bps. What is the overall retrieval time in case
of:
(a) non-persistent HTTP:(a) non persistent HTTP:

(b) persistent HTTP with pipeline:

Application Layer 2-28

HTTP message format

Application Layer 2-29

HTTP Request Message

 From client to server
 General format

request line

header

method sp sp cr lfversionURL

cr lfvalueheader field name: sp

Application Layer 2-30

header
lines

body

~~ ~~

cr lf

body~~ ~~

a blank line

cr lfvalueheader field name: sp

6

Methods
 3 methods in HTTP/1.0: GET, POST, HEAD
 Additional 2 methods in HTTP/1.1: PUT,

DELETE
 GET – retrieves a document specified in the URL

field from server

Application Layer 2-31

field from server
 HEAD – get some information about document

but not document itself
 POST – provides some information for server, e.g.

input to server when fills a form
 PUT – uploads file in entity body to path specified

in URL field
 DELETE – deletes file specified in the URL field

HTTP request message example

request line
(GET, POST,
HEAD commands)

header

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n

carriage return character

line-feed character

Application Layer 2-32

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

p , pp
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

empty
body

HTTP Response Message

 From server to client
 General format

request line

header

version sp sp cr lfphrasestatus code

cr lfvalueheader field name: sp

Application Layer 2-33

header
lines

body

~~ ~~

cr lf

body~~ ~~

a blank line

cr lfvalueheader field name: sp

HTTP response status codes

200 OK
 d d d bj l i hi

 status code is 3-digit integer that indicates the
response to a received request; status phrase
gives short textual explanation of the status
code

Application Layer 2-34

 request succeeded, requested object later in this msg

301 Moved Permanently
 requested object moved, new location specified later in this msg

(Location:)

400 Bad Request
 request msg not understood by server

404 Not Found
 requested document not found on this server

505 HTTP Version Not Supported

HTTP Response Message Example

status line
(protocol
status code
status phrase)

h d

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6 a5c bf716880"\r\n

Application Layer 2-35

header
lines

data, e.g.,
requested
HTML file

ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

HTTP messaging example

Application Layer 2-36

7

HTTP Headers
 Exchange additional information between the

client and the server

 General Header – gives general information about
the message and can be present in both a request
and response

cr lfvalueheader field name: sp

Application Layer 2-37

and response

Header Description
cache-control Specifies info about caching

connection Specifies whether connection should be
closed or not

date Shows the date and time at which the
message originated

MIME-version Shows the MIME version used
…

HTTP Request Headers
 REQUEST HEADER – can be present only in a request

message – it specifies the client’s configuration and the
client’s preferred document format

Header Description

accept Shows the media format the client can accept

Application Layer 2-38

accept-language Shows the language the client can accept

host Specifies the Internet host of the requested
resource

if-modified-since Send the document if newer than specified
date

user-agent Identifies the client program

…

HTTP Response Header
 RESPONSE HEADER – can be present only in a response

message – it specifies the server’s configuration and
special information about the request

Header Description

public Shows the list of HTTP methods supported by
this server

Application Layer 2-39

retry-after Shows how long the service is expected be
unavailable

server Shows the server name and version number

set-cookie Define a name – value pair associated with this
URL

…

HTTP Entity Header
 ENTITY HEADER – gives information about the body of

the document/message – mostly present in response
message

Header Description

content-encoding Specifies the encoding scheme

content-language Specifies the language

Application Layer 2-40

content language Specifies the language

content-length Shows the length of the document

content-type Specifies the media type

expires Gives the date and time when contents may
change

location Specifies the location of the created or moved
document

…

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port) at cse website.
anything typed in sent
to port 80 at www.cse.yorku.ca

telnet www.cse.yorku.ca 80

Application Layer 2-41

2. type in a GET HTTP request:

GET /cshome/index.html HTTP/1.1
Host: www.cse.yorku.ca

by typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Trying out HTTP (client side) for yourself

Application Layer 2-42

8

Cookie
 HTTP is a stateless protocol – server forgets

about each client as soon as it delivers
response
 Stateless behavior is an issue when:

• Server wants to have accurate count of site visitors

Application Layer 2-43

• Server wants to have accurate count of site visitors
• Server wants to restrict user access, etc.
• Server wants to personalize pages for each client, or

remember selections they made

 Cookie Technology allows site to keep track of
users
 A cookie is a short piece of data, not code. It is not an

executable program and cannot directly harm the machine

User-server state

many Web sites use cookies
four components:

1) For new user, server adds
Set-Cookie header to its
response with an

example:
 Susan always access

Internet from PC
 visits specific e-

commerce site for

Application Layer 2-44

p
identifier

2) Client stores the ID in a
cookie file kept on its disk
and managed by user’s
browser

3) Back-end database keeps
the ID on server

4) Client uses the ID in all
subsequent requests

first time
 when initial HTTP

requests arrives at
site, site creates:
 unique ID
 entry in backend

database for ID

Cookies: keeping “state”

client server

cookie file

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
set-cookie: 1678

ebay 8734
amazon 1678

backend
database

Application Layer 2-45

usual http response msg

usual http response msg

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
amazon 1678

Cookies Example

Application Layer 2-46

Issues with Cookies

what cookies can be used
for:

 authorization
 shopping carts
 recommendations
 user session state (Web

cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name and

e-mail to sites

aside

Application Layer 2-47

(
e-mail)

Issues with cookies:
 Undesirable cookies: any server can set a

cookie for any reason. User may not even
be informed that this is happening

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache

b h h

goal: satisfy client request without involving origin server

proxy
server

Application Layer 2-48

 object in cache: cache
returns object

 else cache requests
object from origin
server, then returns
object to client

client

client origin
server

origin
server

9

More about Web caching

 cache acts as both
client and server
 server for original

requesting client
 client to origin server

i ll h i

why Web caching?
 reduce response time

for client request
 reduce traffic on an

institution’s access link

Application Layer 2-49

 typically cache is
installed by ISP
(university, company,
residential ISP)

institution s access link
 Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Caching example:

assumptions:
 avg object size: 100K bits
 avg request rate from browsers to origin

servers:15/sec
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 15 Mbps

origin
servers

public
Internet

institutional
network

15 Mbps
access link

Application Layer 2-50

 access link rate: 15 Mbps

consequences:
 LAN traffic

intensity=(15req/s*1Mb/req)/100Mbps
=0.15

 WAN traffic
intensity=(15req/s*1Mb/req)/15Mbps= 1

 total delay = Internet delay + access
delay + LAN delay
= 2 sec + minutes + msecs

problem!

network
100Mbps LAN

assumptions:
 avg object size: 1Mbits
 avg request rate from browsers to

origin servers:15/sec
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 15Mbps

Caching example: fatter access link

origin
servers

public
Internet

Application Layer 2-51

 access link rate: 15Mbps

consequences:
 LAN TI = 0.15
 WAN TI = 1
 total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + msecs

15 Mbps
access link

100Mbps
100 Mbps

msecs

Cost: increased access link speed (not cheap!)

0.15 institutional
network

100Mbps LAN

Caching example: install local cache

origin
servers

assumptions:
 avg object size: 1 Mbits
 avg request rate from browsers to

origin servers:15/sec
 RTT from institutional router to any

origin server: 2 sec
 access link rate: 15 Mbps

public
Internet

institutional
network

100Mbps LAN

Application Layer 2-52

15Mbps
access link

local web
cache

 access link rate: 15 Mbps

consequences:
 LAN TI: 0.15
 access link utilization = 1
 total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

Caching example: install local cache
Calculating access link

utilization, delay with cache:
 suppose cache hit rate is

0.4(typical 0.2~0.7)
 40% requests satisfied at cache,

60% requests satisfied at origin

origin
servers

 access link utilization:

public
Internet

Application Layer 2-53

15 Mbps
access link

 60% of requests use access link
 data rate to browsers over access link

= 0.6*15req/s*1Mbps = 9 Mbps
 TI = 9/15 = .6

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
 = 0.6 (2.01) + 0.4 (~msecs)
 = ~ 1.2 secs
 less than with 100 Mbps link (and

cheaper too!)

institutional
network

100bps LAN

local web
cache

Web Cache Challenge
 Goal: do not send object

if cache has up-to-date
cached version

 What if cached data is
changed?

 Solution: use conditional
GET in HTTP message
If modified since:

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

object
not

modified
before
<date>

client server

Application Layer 2-54

If-modified-since:
<date>

 server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

304 Not Modified <date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

10

Chapter 2: outline

2.1 principles of network applications
 app architectures
 app requirements

2.2 Web and HTTP
2 3 FTP

Application Layer 2-55

2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

FTP: the file transfer protocol
file transfer

FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

Application Layer 2-56

 transfer file to/from remote host
 client/server model
 client: side that initiates transfer (either to/from remote)
 server: remote host

 ftp: RFC 959
 ftp server: port 21

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory sends commands

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

Application Layer 2-57

directory, sends commands
over control connection

 when server receives file
transfer command, such as get
or put, server opens 2nd TCP
data connection (for file) to
client

 after transferring one file,
server closes data connection

 server opens another TCP
data connection to transfer
another file

 FTP server maintains
“state”: current directory,
earlier authentication

FTP commands
sample commands:
 asc - sent as ASCII

text over control
channel

 bin – sent as binary
 ls – list of file

 Examples
 ftp my@cse.yorku.ca
 ls –al
 cd prism
 get index html

Application Layer 2-58

 cd – change directory
 get filename –

retrieves a file from
remote host

 put filename stores
file onto remote host

 ye - quit

get index.html
 put myfile

FTP Example

Application Layer 2-59

Chapter 2: outline

2.1 principles of network applications
 app architectures
 app requirements

2.2 Web and HTTP
2 3 FTP

Application Layer 2-60

2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

11

Electronic mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

user mailbox

outgoing
message queue

mail
server

mail
server

SMTP

user
agent

user
agent

user
agent

Application Layer 2-61

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Outlook, Thunderbird,

iPhone mail client
 outgoing, incoming

messages stored on server

server

mail
server

SMTP

SMTP
agent

user
agent

user
agent

user
agent

Electronic mail: mail servers

mail servers:
 mailbox contains incoming

messages for user
 message queue of outgoing

(to be sent) mail messages
 SMTP protocol between

mail
server

mail
server

SMTP

user
agent

user
agent

user
agent

Application Layer 2-62

 SMTP protocol between
mail servers to send email
messages
 client: sending mail

server
 “server”: receiving mail

server

server

mail
server

SMTP

SMTP
agent

user
agent

user
agent

user
agent

Electronic Mail: SMTP [RFC 2821]

 uses TCP to reliably transfer email message from
client to server, port 25

 direct transfer: sending server to receiving
server

 three phases of transfer

Application Layer 2-63

p
 handshaking (greeting)
 transfer of messages
 closure

 command/response interaction (like HTTP, FTP)
 commands: ASCII text
 response: status code and phrase

 messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

Application Layer 2-64

user
agent

3) client side of SMTP opens
TCP connection with Bob’s
mail server

to read message

mail
server

mail
server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user
agent

Sample SMTP interaction
S-SMTP server, C-SMTP client

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok

Application Layer 2-65

C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,

header
blank
line

Application Layer 2-66

 To:
 From:
 Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

 Body: the “message”
 ASCII characters only

body

12

Mail access protocols

 SMTP: delivery/storage to receiver’s server

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-67

 SMTP: delivery/storage to receiver s server
 mail access protocol: retrieval from server
 POP: Post Office Protocol [RFC 1939]: authorization,

download
 IMAP: Internet Mail Access Protocol [RFC 1730]: more

features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase
 client commands:

 user: declare username
 pass: password

 server responses
 +OK

C: list
S: 1 498
S: 2 912
S:

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-68

 -ERR

transaction phase, client:
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 quit

S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

POP3 (more) and IMAP
more about POP3
 previous example uses

POP3 “download and
delete” mode
 Bob cannot re-read e-

mail if he changes

IMAP
 keeps all messages in one

place: at server
 allows user to organize

messages in folders
 keeps user state across

Application Layer 2-69

g
client

 POP3 “download-and-
keep”: copies of messages
on different clients

 POP3 is stateless across
sessions

 keeps user state across
sessions:
 names of folders and

mappings between
message IDs and folder
name

Chapter 2: outline

2.1 principles of network applications
 app architectures
 app requirements

2.2 Web and HTTP
2 3 FTP

Application Layer 2-70

2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

DNS: domain name system
 Internet-host identifiers
 IP addresses

• unique, universal identifiers, e.g. 74.125.226.50
• Scanning IP address from left to right more and more information about

specific location of host can be obtained
• Difficult to remember

 Symbolic (DNS) names

Application Layer 2-71

 Symbolic (DNS) names
• Unique user friendly name, e.g. www.google.com
• Easy to remember – preferred by humans
• Provide little information about host location – difficult to aggregate by

routers
• Consist of variable number of alphanumeric characters – difficult to

process by routers

 DNS enables IP address to Symbolic name translation and vice
versa

Domain Name Label

Application Layer 2-72

13

DNS Names vs. URLs

 DNS name ≠ URL
 Typical URL contains three parts:
URL = protocol + DNS name + path

Application Layer 2-73

Elements of DNS
 Distributed database – implemented as a hierarchy

of many name (DNS) servers
 Application-layer protocol – allows hosts to query

distributed database
 Runs over UDP on port 53
 Unlike HTTP, DNS is not an application with which users

directly interact – DNS provides service to other

Application Layer 2-74

y p
software

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

… …

Application Layer 2-75

DNS servers DNS servers DNS servers

 3 types of DNS servers – Root DNS server, Top-Level Domain
(TLD) server, Authoritative DNS server

 No single DNS server has all mappings for all hosts – mappings are
divided and distributed across DNS servers

DNS: root name servers

 contacted by local name server that can not resolve name
 root name server:
 contacts authoritative name server if name mapping not known
 gets mapping
 returns mapping to local name server

Application Layer 2-76

13 root name
“servers”
worldwide

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

TLD, authoritative servers

top-level domain (TLD) servers:
 responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
 Network Solutions maintains servers for .com TLD
 Educause for .edu TLD

Application Layer 2-77

authoritative DNS servers:
 organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

 can be maintained by organization or service provider

Local DNS name server

 does not strictly belong to hierarchy
 each ISP (residential ISP, company, university) has

one
 also called “default name server”

 when host makes DNS query query is sent to its

Application Layer 2-78

 when host makes DNS query, query is sent to its
local DNS server
 has local cache of recent name-to-address translation

pairs (but may be out of date!)
 acts as proxy, forwards query into hierarchy

14

root DNS server

local DNS server

2
3

4

5

TLD DNS server

DNS name
resolution example

 host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:

Application Layer 2-79

requesting host
cis.poly.edu

gaia.cs.umass.edu

dns.poly.edu

1
6

authoritative DNS server
dns.cs.umass.edu

7
8

iterated query:
 contacted server

replies with name of
server to contact

 “I don’t know this
name, but ask this
server”

4

6

3

recursive query:
 puts burden of name

resolution on
contacted name

root DNS server

local DNS server

2
7

DNS name
resolution example

TLD DNS
server

Application Layer 2-80

45server
 heavy load at upper

levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

dns.poly.edu

1

authoritative DNS server
dns.cs.umass.edu

8

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)
 TLD servers typically cached in local name servers

• thus root name servers not often visited

Application Layer 2-81

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire
 update/notify mechanisms proposed IETF standard
 RFC 2136

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

type=A
 name is hostname

type=CNAME
 name is alias name for some

Application Layer 2-82

type=NS
 name is domain (e.g.,

foo.com)
 value is hostname of

authoritative name
server for this domain

 value is IP address
name is alias name for some
“canonical” (the real) name

 www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

type=MX
 value is name of mailserver

associated with name

DNS protocol, messages

 query and reply messages, both with same message
format

msg header
 identification: 16 bit # for

query, reply to query uses

identification flags

questions

additional RRs# authority RRs

answer RRs

2 bytes 2 bytes

Application Layer 2-83

q y p y q y
same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

questions (variable # of questions)

additional RRs# authority RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

identification flags

questions

additional RRs# authority RRs

answer RRs

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-84

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

questions (variable # of questions)

additional RRs# authority RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

15

Inserting records into DNS

 example: new startup “Network Utopia”
 register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)
i i RR i TLD

Application Layer 2-85

 registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
 Bombard root servers

with traffic
 Not successful to date
 Traffic Filtering

Redirect attacks
 Man-in-middle
 Intercept queries

 DNS poisoning
S d b li Traffic Filtering

 Local DNS servers
cache IPs of TLD
servers, allowing root
server bypass

 Bombard TLD servers
 Potentially more

dangerous

 Send bogus relies to
DNS server, which
caches

Exploit DNS for DDoS
 Send queries with

spoofed source
address: target IP

 Requires amplification
Application Layer 2-86

Chapter 2: outline

2.1 principles of network applications
 app architectures
 app requirements

2.2 Web and HTTP
2 3 FTP

Application Layer 2-87

2.3 FTP
2.4 electronic mail

 SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications

Pure P2P architecture
 no always-on server
 arbitrary end systems

directly communicate
 peers are intermittently

connected and change IP
addresses

Application Layer 2-88

examples:
 file distribution

(BitTorrent)
 Streaming (KanKan)
 VoIP (Skype)

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
 peer upload/download capacity is limited resource

us: server upload
capacity

Application Layer 2-89

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

File distribution time: client-server

 server transmission: must
sequentially send (upload) N
file copies:
 time to send one copy: F/us

 time to send N copies: NF/us

 client: each client must

us

network

F

Application Layer 2-90

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

download file copy
 dmin = min client download rate
 min client download time: F/dmin

di
ui

16

File distribution time: P2P

 server transmission: must
upload at least one copy
 time to send one copy: F/us

 client: each client must
download file copy
 min client download time: F/dmin

l d l d NF b

us

network

di
ui

F

Application Layer 2-91

time to distribute F
to N clients using

P2P approach
DP2P > max{F/us,,F/dmin,,NF/(us + ui)}

 clients: as aggregate must download NF bits
 max upload rate (limting max download rate) is us + ui

… but so does this, as each peer brings service capacity
increases linearly in N …

2.5

3

3.5

tio
n

T
im

e P2P

Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-92

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

N

M
in

im
u

m
 D

is
tr

ib
ut

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

 file divided into 256Kb chunks

 peers in torrent send/receive file chunks

Application Layer 2-93

Alice arrives …
… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Chapter 2: summary

 application architectures
 client-server
 P2P

 application service
requirements:

our study of network apps now complete!

 specific protocols:
 HTTP
 FTP
 SMTP, POP, IMAP

Application Layer 2-94

q
 reliability, bandwidth, delay

 Internet transport service
model
 connection-oriented,

reliable: TCP
 unreliable, datagrams: UDP

SMTP, POP, IMAP
 DNS
 P2P: BitTorrent

 typical request/reply
message exchange:
 client requests info or

service
 server responds with

important themes:
 centralized vs. decentralized
 stateless vs. stateful

Chapter 2: summary
most importantly: learned about protocols!

Application Layer 2-95

server responds with
data, status code

 message formats:
 headers: fields giving

info about data
 data: info being

communicated

 reliable vs. unreliable msg
transfer

 “complexity at network
edge”

A note on these slides

Part of PPT slides were adopted from Prof Natalija

Introduction 1-96

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Part of PPT slides were adopted from Prof. Natalija
Vlajic’ early CSE3214 course and the rest were
adopted from the book “Computer Networking: A
Top Down Approach” 6th Edition by Jim Kurose and
Keith Ross

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

