CSE 3214: Computer Network
Protocols and Applications

—Transport Layer

Dr. Peter Lian, Professor
Department of Computer Science and Engineering
York University
Email: peterlian@cse.yorku.ca
Office: 1012C Lassonde Building
Course website: http://wiki.cse.yorku.ca/
course_archive/2012-13/W/3214

Chapter 3: Transport Layer

our goals:
<+ understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
services: transport
= multiplexing, = TCP: connection-oriented
demultiplexing reliable transport
" reliable data transfer * TCP congestion control

" flow control
" congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
" segment structure
= reliable data transfer
= flow control
" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols
=

<« provide logical communication
between app processes
running on different hosts

% transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" receive side: reassembles
segments into messages, transpor
passes to app layer

data link
hysical
- more than one transport
protocol available to apps

|
= [nternet: TCP and UDP

L)

>

L)

D)

Transport Layer 3-4

Transport vs. network layer

<+ network layer: logical

communication
between hosts

<+ transport layer:
ogical
communication
petween processes
" relies on, enhances,

network layer
services

- household analogy:

12 kids in Ann_’s house sending
letters to |2 kids in Bill 's
house:

» hosts = houses
» processes = kids

» app messages = letters in
envelopes

+ transport protocol = Ann
and Bill who demux to in-
house siblings

» network-layer protocol =
postal service

Transport Layer 3-5

Internet transport-layer protocols

+ reliable, in-order

delivery (TCP) A

= congestion control =

* flow control
" connection setup

- unreliable, unordered
delivery: UDP

= no-frills extension of
best-effort” IP

< services not available:

= delay guarantees
" bandwidth guarantees

>

L)

D)

application
d DO
net
data li

physic

netw

wolesro

network

data

link

data link(e;
physical O

hysical
Shork .
k

O
P
network [€%
data link o
physical
O
[_networkNy®,
data link
~leghysical
network
d?]ta _|'n||< apacation
sica
Physt network o
data link g:ttrllci);k
{ physical
P1y physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
" segment structure
= reliable data transfer
= flow control
" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:

handle data from multiple — demultiplexing at receiver: —

sockets, add transport header use header info to deliver

(later used for demultiplexing) receklved segments to correct
socket

—"

application application [.[. | socket

transport

network
link
physical

Transport Layer 3-8

How demultiplexing works

% host receives IP datagrams

" each datagram has source |IP
address, destination IP
address

= each datagram carries one
transport-layer segment

" each segment has source,
destination port number
% host uses IP addresses &
port numbers to direct
segment to appropriate
socket

32 bits >

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

= recall in Socket Programming: ~ * YVhen creating datagram

clientSocket=socket(AF_INET, to send into UDP socket,
SOCK_DGRAM) must specify
clientSocket.sendto(message,(serverName, = destination |IP address
serverPort))

" destination port #

«» when host receives UDP IP datagrams with same
segment: cbiest clll':‘faddr’ & dest. P(I)Igt H,

i} L ut different source
.ChECkS destination port # ‘ addresses and/or source
in segment :

, port numbers will be

" directs UDP segment to directed to same socket at

socket with that port # dest

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
Datg gr]?msg cket DatagramSocket DatagramSocket
mySocke = new mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; (5775) ;

application

application @ application
A A |
A transport
trangport netwo "
network | n’<

ical

ha

source port: 6428 source port: ?
’ dest port: 9157 + dest port: ?
> < L 4
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

+ TCP socket identified
by 4-tuple:
= source |IP address
" source port number
= dest IP address
" dest port number

+ demux: receiver uses
all four values to direct
segment to appropriate
socket

% server host may support
many simultaneous TCP
sockets:

" each socket identified by
its own 4-tuple
« web servers have
different sockets for
each connecting client

" non-persistent HT TP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux: example

application e ——
application application
4 angkport :
tran|sport detwork transport
net{vork lidk network
lipk hysical link
g phyical ol | server: IP physical D |
—~ address B S
host: IP source IP,port: B,80 « host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80_

source IPport: C,9157
dest IP,port: B,80_

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: example

threaded server

application

application

4
trangport

netivork

link

| g phylsical

host: IP source IP,port: B,80
address A dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

server: IP
address B

application

transpcﬁ_

i

network

link

physical D

< host: IP

source IP,port: C,5775 address C

dest IP,port: B,80

source IPport: C,9157
dest IP,port: B,80

Transport Layer 3-14

