
1 
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rdt3.0: channels with errors and loss 

new assumption: 
underlying channel can 
also lose packets 
(data, ACKs) 
  checksum, seq. #, 

ACKs, retransmissions 
will be of help … but 
not enough 

approach: sender waits 
“reasonable” amount of 
time for ACK  

  retransmits if no ACK 
received in this time 

  if pkt (or ACK) just delayed 
(not lost): 
  retransmission will be  

duplicate, but seq. #’s 
already handles this 

  receiver must specify seq 
# of pkt being ACKed 

  requires countdown timer 
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rdt3.0 sender 
sndpkt = make_pkt(0, data, checksum) 
udt_send(sndpkt) 
start_timer 

rdt_send(data) 

Wait 
for 

ACK0 

rdt_rcv(rcvpkt) &&   
( corrupt(rcvpkt) || 
isACK(rcvpkt,1) ) 

Wait for  
call 1 from 

above 

sndpkt = make_pkt(1, data, checksum) 
udt_send(sndpkt) 
start_timer 

rdt_send(data) 

rdt_rcv(rcvpkt)    
&& notcorrupt(rcvpkt)  
&& isACK(rcvpkt,0)  

rdt_rcv(rcvpkt) &&   
( corrupt(rcvpkt) || 
isACK(rcvpkt,0) ) 

rdt_rcv(rcvpkt)    
&& notcorrupt(rcvpkt)  
&& isACK(rcvpkt,1)  

stop_timer 
stop_timer 

udt_send(sndpkt) 
start_timer 

timeout 

udt_send(sndpkt) 
start_timer 

timeout 

rdt_rcv(rcvpkt) 

Wait for  
call 0from 

above 

Wait 
for 

ACK1 

Λ	

rdt_rcv(rcvpkt) 

Λ	

Λ	


Λ	
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sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 
rcv pkt0 

pkt0 

pkt0 

pkt1 

ack1 

ack0 

ack0 

(a) no loss 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 
rcv pkt0 

pkt0 

pkt0 

ack1 

ack0 

ack0 

(b) packet loss 

pkt1 
X 

loss 

pkt1 
timeout 

resend pkt1 

rdt3.0 in action 
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rdt3.0 in action 

rcv pkt1 
send ack1 

(detect duplicate) 

pkt1 

sender receiver 

rcv pkt1 

rcv pkt0 

send ack0 

send ack1 

send ack0 

rcv ack0 

send pkt0 

send pkt1 

rcv ack1 

send pkt0 
rcv pkt0 

pkt0 

pkt0 

ack1 

ack0 

ack0 

(c) ACK loss 

ack1 
X 

loss 

pkt1 
timeout 

resend pkt1 

rcv pkt1 
send ack1 

(detect duplicate) 

pkt1 

sender receiver 

rcv pkt1 

send ack0 
rcv ack0 

send pkt1 

send pkt0 
rcv pkt0 

pkt0 

ack0 

(d) premature timeout/ delayed ACK 

pkt1 
timeout 

resend pkt1 

ack1 

send ack1 

send pkt0 
rcv ack1 

pkt0 

ack1 

ack0 

send pkt0 
rcv ack1 pkt0 

rcv pkt0 
send ack0 ack0 

rcv pkt0 

send ack0 
(detect duplicate) 
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Performance of rdt3.0 
  rdt3.0 is correct, but performance stinks 
  e.g.: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: 

 U sender: utilization – fraction of time sender busy sending 

  if RTT=30 msec, 1KB pkt every 30 msec: 33kB/sec thruput 
over 1 Gbps link 

  network protocol limits use of physical resources! 

Dtrans = L 
R 

8000 bits 
109 bits/sec = = 8 microsecs 
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rdt3.0: stop-and-wait operation 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last packet bit transmitted, t = L / R 

first packet bit arrives 
last packet bit arrives, send ACK 

ACK arrives, send next  
packet, t = RTT + L / R 
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Pipelined protocols 

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts 
  range of sequence numbers must be increased 
  buffering at sender and/or receiver 

  two generic forms of pipelined protocols: go-Back-N, 
selective repeat 

Transport Layer 3-47 

Pipelining: increased utilization 

first packet bit transmitted, t = 0 

sender receiver 

RTT  

last bit transmitted, t = L / R 

first packet bit arrives 
last packet bit arrives, send ACK 

ACK arrives, send next  
packet, t = RTT + L / R 

last bit of 2nd packet arrives, send ACK 
last bit of 3rd packet arrives, send ACK 

3-packet pipelining increases 
 utilization by a factor of 3! 
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Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 
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TCP: Overview  RFCs: 793,1122,1323, 2018, 2581 

  full duplex data: 
  bi-directional data flow 

in same connection 
 MSS: maximum segment 

size 
  connection-oriented:  

  handshaking (exchange 
of control msgs) inits 
sender, receiver state 
before data exchange 

  flow controlled: 
  sender will not 

overwhelm receiver 

  point-to-point: 
 one sender, one receiver  

  reliable, in-order byte 
steam: 
  no “message 

boundaries” 
  pipelined: 

 TCP congestion and flow 
control set window size 

Transport Layer 3-50 

TCP segment structure 

Transport Layer 3-51 

TCP sequence number 
 Sequence numbers: 

 32-bit field 
 byte stream “number” of the first byte in the segment 

 Example: file size=150 byte, max segment size=50 byte 
•  Sequence number for each segment: 0, 50, 100, … 

0 1 2 ... 49 50 51 … 99 100 101 … 149 

File size: 150 bytes 

Data for 1st  
segment 

Data for 2nd  
segment 

Data for 3rd  
segment 
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TCP acknowledgment number 
 Acknowledgements: 
 32-bit field 
 Byte-steam number of next byte that host is expecting to 
receive from other side – cumulative ACKs 
 If the byte numbered “x” has been successfully received, “x+1” 
is the acknowledgment number 
 Pure acknowledgment = TCP segment without data – 
acknowledgment is said to be piggybacked 

 Example of cumulative ACK 
Host A sent 1st segment containing 50 bytes to Host B 

Sequence number = 0  in Host A’s segment to Host B 

If B receives the package correctly,  
 Acknowledgment number = 50 in Host B’s segment to Host A 

Transport Layer 3-53 

TCP seq. numbers, ACKs 

User 
types 
‘C’ 

host ACKs 
receipt  

of echoed 
‘C’ 

host ACKs 
receipt of 
‘C’, echoes 
back ‘C’ 

simple telnet scenario 

Host B Host A 

Seq=42, ACK=79, data = ‘C’ 

Seq=79, ACK=43, data = ‘C’ 

Seq=43, ACK=80 

Transport Layer 3-54 

TCP header length, reserved, window size 
 Header Length 

  4-bit field,  
  Represents the number of 4-byte words in the header 
  Header length 20-60 bytes  field value always 5-15 

 Reserved 
  6-bit field, reserved for future use 

 Window Size 
  16-bit field 
  Defines the number of bytes, beginning with sequence 

number indicated in the acknowledgment field that receiver 
is willing to accept 

  Used for flow control 

Transport Layer 3-55 

TCP checksum 
 Checksum 

  16-bit field,  
  Used to detect errors over entire TCP datagram (header

+data) + 96-bit pseudoheader conceptually prefixed to 
header at the time of calculation 
•  Pseudoheader contains several field from IP header: source and 

destination IP addresses, protocol and segment length filed 
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TCP segment example 
  Pseudoheader added to the TCP datagram 

Transport Layer 3-57 

TCP pointer, options,  padding 
 Urgent pointer 

  16-bit field,  
  Valid only if the urgent flag is set 
  Contains the sequence number of the last byte in a 

sequence of urgent data 
 Options 

  There can be up to 40 bytes of optional information in the 
TPC header mostly related to flow/congestion control 

 Padding 
  Ensures that TCP header ends and data begins on 32-bit 

boundary 
  Padding is composed of 0-s 

Transport Layer 3-58 

TCP control flags 

Transport Layer 3-59 

TCP round trip time, timeout 
Q: how to set TCP 

timeout value? 
  longer than RTT 

  but RTT varies 

  too short: premature 
timeout, unnecessary 
retransmissions 

  too long: slow reaction 
to segment loss 

Q: how to estimate RTT? 
  SampleRTT: measured 

time from segment 
transmission until ACK 
receipt 
  ignore retransmissions 

  SampleRTT will vary, want 
estimated RTT “smoother” 
  average several recent 

measurements, not just 
current SampleRTT 
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EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT 

  exponential weighted moving average 
  influence of past sample decreases exponentially fast 
  typical value: α = 0.125 

TCP round trip time, timeout 

RT
T 

(m
ill

is
ec

on
ds

) 
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr 

sampleRTT 

EstimatedRTT 

time (seconds) Transport Layer 3-61 

  timeout interval: EstimatedRTT plus “safety margin” 
  large variation in EstimatedRTT -> larger safety margin 

  estimate SampleRTT deviation from EstimatedRTT:  
DevRTT = (1-β)*DevRTT + 
             β*|SampleRTT-EstimatedRTT| 

TCP round trip time, timeout 

(typically, β = 0.25) 

TimeoutInterval = EstimatedRTT + 4*DevRTT 

estimated RTT “safety margin” 

Transport Layer 3-62 

Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 

Transport Layer 3-63 

TCP reliable data transfer 

  TCP creates rdt service 
on top of IP’s unreliable 
service 
  pipelined segments 
  cumulative acks 
  single retransmission 

timer 
  retransmissions  

triggered by: 
  timeout events 
  duplicate acks 

let’s initially consider 
simplified TCP sender: 
  ignore duplicate acks 
  ignore flow control, 

congestion control 
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TCP sender events: 
data rcvd from app: 
  create segment with 

seq # 
  seq # is byte-stream 

number of first data 
byte in  segment 

  start timer if not 
already running  
  think of timer as for 

oldest unacked 
segment 

  expiration interval: 
TimeOutInterval  

timeout: 
  retransmit segment 

that caused timeout 
  restart timer 
 ack rcvd: 
  if ack acknowledges 

previously unacked 
segments 
  update what is known 

to be ACKed 
  start timer if there are  

still unacked segments 

Transport Layer 3-65 

TCP: retransmission scenarios 

lost ACK scenario 

Host B Host A 

Seq=92, 8 bytes of data 

ACK=100 

Seq=92, 8 bytes of data 

X tim
eo

ut
 

ACK=100 

premature timeout 

Host B Host A 

Seq=92, 8 bytes of data 

ACK=100 

Seq=92,  8 
bytes of data 

tim
eo

ut
 

ACK=120 

Seq=100, 20 bytes of data 

ACK=120 

SendBase=100 

SendBase=120 

SendBase=120 

SendBase=92 

Transport Layer 3-66 

TCP: retransmission scenarios 

X 

cumulative ACK 

Host B Host A 

Seq=92, 8 bytes of data 

ACK=100 

Seq=120,  15 bytes of data 

tim
eo

ut
 

Seq=100, 20 bytes of data 

ACK=120 

Transport Layer 3-67 

TCP ACK generation [RFC 1122, RFC 2581] 

event at receiver 

arrival of in-order segment with 
expected seq #. All data up to 
expected seq # already ACKed 

arrival of in-order segment with 
expected seq #. One other  
segment has ACK pending 

arrival of out-of-order segment 
higher-than-expect seq. # . 
Gap detected 

arrival of segment that  
partially or completely fills gap 

TCP receiver action 

delayed ACK. Wait up to 500ms 
for next segment. If no next segment, 
send ACK 

immediately send single cumulative  
ACK, ACKing both in-order segments  

immediately send duplicate ACK,  
indicating seq. # of next expected byte 

immediate send ACK, provided that 
segment starts at lower end of gap 
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TCP fast retransmit 

  time-out period  often 
relatively long: 
  long delay before 

resending lost packet 
  detect lost segments 

via duplicate ACKs. 
  sender often sends 

many segments back-
to-back 

  if segment is lost, there 
will likely be many 
duplicate ACKs. 

if sender receives 3 
ACKs for same data 
(“triple duplicate ACKs”), 
resend unacked 
segment with smallest 
seq # 
  likely that unacked 

segment lost, so don’t 
wait for timeout 

TCP fast retransmit 

(“triple duplicate ACKs”),  

Transport Layer 3-69 

X

fast retransmit after sender  
receipt of triple duplicate ACK 

Host B Host A 

Seq=92, 8 bytes of data 

ACK=100 

tim
eo

ut
 

ACK=100 

ACK=100 

ACK=100 

TCP fast retransmit 

Seq=100, 20 bytes of data 

Seq=100, 20 bytes of data 

Transport Layer 3-70 

Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 

Transport Layer 3-71 

TCP flow control 
application 

process 

TCP socket 
receiver buffers 

TCP 
code 

IP 
code 

application 

OS 

receiver protocol stack 

application may  
remove data from  

TCP socket buffers ….  

… slower than TCP  
receiver is delivering 
(sender is sending) 

from sender 

receiver controls sender, so 
sender won’t overflow 
receiver’s buffer by transmitting 
too much, too fast 

flow control 
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TCP flow control 

buffered data 

free buffer space rwnd 

RcvBuffer 

TCP segment payloads 

to application process 
  receiver “advertises” free 

buffer space by including 
rwnd value in TCP header 
of receiver-to-sender 
segments 
  RcvBuffer size set via 

socket options (typical default 
is 4096 bytes) 

  many operating systems 
autoadjust RcvBuffer 

  sender limits amount of 
unacked (“in-flight”) data to 
receiver’s rwnd value  

  guarantees receive buffer 
will not overflow 

receiver-side buffering 

Transport Layer 3-73 

Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 

Transport Layer 3-74 

Connection Management 
before exchanging data, sender/receiver “handshake”: 
  agree to establish connection (each knowing the other willing 

to establish connection) 
  agree on connection parameters 

connection state: ESTAB 
connection variables: 

seq # client-to-server 
         server-to-client 
rcvBuffer size 
   at server,client  

application 

network 

connection state: ESTAB 
connection Variables: 

seq # client-to-server 
          server-to-client 
rcvBuffer size 
   at server,client  

application 

network 

Socket clientSocket =    
  newSocket("hostname","port 

number"); 

Socket connectionSocket = 
welcomeSocket.accept(); 

Transport Layer 3-75 

Q: will 2-way handshake 
always work in 
network? 

  variable delays 
  retransmitted messages 

(e.g. req_conn(x)) due to 
message loss 

  message reordering 
  can’t “see” other side 

2-way handshake: 

Let’s talk 

OK 
ESTAB 

ESTAB 

choose x 
req_conn(x) 

ESTAB 

ESTAB 
acc_conn(x) 

Agreeing to establish a connection 
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Agreeing to establish a connection 
2-way handshake failure scenarios: 

retransmit 
req_conn(x) 

ESTAB 

req_conn(x) 

half open connection! 
(no client!) 

client 
terminates 

server 
forgets x 

connection  
x completes 

retransmit 
req_conn(x) 

ESTAB 

req_conn(x) 

data(x+1) 

retransmit 
data(x+1) 

accept 
data(x+1) 

choose x 
req_conn(x) 

ESTAB 

ESTAB 

acc_conn(x) 

client 
terminates 

ESTAB 

choose x 
req_conn(x) 

ESTAB 

acc_conn(x) 

data(x+1) accept 
data(x+1) 

connection  
x completes server 

forgets x 

Transport Layer 3-77 

TCP 3-way handshake 

SYNbit=1, Seq=x 

choose init seq num, x 
send TCP SYN msg 

ESTAB 

SYNbit=1, Seq=y 
ACKbit=1; ACKnum=x+1 

choose init seq num, y 
send TCP SYNACK 
msg, acking SYN 

ACKbit=1, ACKnum=y+1 

received SYNACK(x)  
indicates server is live; 
send ACK for SYNACK; 

this segment may contain  
client-to-server data 

received ACK(y)  
indicates client is live 

SYNSENT 

ESTAB 

SYN RCVD 

client state 

LISTEN 

server state 

LISTEN 

Transport Layer 3-78 

TCP: closing a connection 

  client, server each close their side of connection 
  send TCP segment with FIN bit = 1 

  respond to received FIN with ACK 
 on receiving FIN, ACK can be combined with own FIN 

  simultaneous FIN exchanges can be handled 

Transport Layer 3-79 

FIN_WAIT_2 

CLOSE_WAIT 

FINbit=1, seq=y 

ACKbit=1; ACKnum=y+1 

ACKbit=1; ACKnum=x+1 
 wait for server 

close 

can still 
send data 

can no longer 
send data 

LAST_ACK 

CLOSED 

TIMED_WAIT 

 timed wait  
for 2*max  

segment lifetime 

CLOSED 

TCP: closing a connection 

FIN_WAIT_1 FINbit=1, seq=x can no longer 
send but can 
 receive data 

clientSocket.close() 

client state server state 

ESTAB ESTAB 
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TCP client lifecycle TCP client lifecycle(1) 
1.  TCP client starts in CLOSED state 
2.  While in this state, TCP client can receive an active open 

request from client application program. It, then, sends a 
SYN segment to TCP server and goes to the SYN-SENT 
state 

3.  While SYN-SENT state, TCP client can receive a SYN
+ACK segment from TCP server. It, then, sends an ACT 
to TCP server and goes to ESTABLISHED (date transfer) 
state. TPC client remains in this state as long as it sends 
and receives data. 

4.  While in ESTABLISHED state, TCP client can receive a 
close request from the client application program. It 
sends a FIN segment to TCP server and goes to FIN-
WAIN-1 state 

Transport Layer 3-81 

TCP client lifecycle (2) 
5.  While in FIN-WAIT-1 state, TCP client waits to receive 

an ACK from TCP server. When the ACK is received, 
TCP client goes to FIN-WAIT-2 state. It does not send 
anything. Now the connection is closed in one direction. 

6.  TCP client remains in FIN-WAIT-2 state, waiting for TCP 
server to close the connection from its end. Once TCP 
client receivers a FIN segment from TCP server, it sends 
an ACK segment and goes to the TIME-WAIT state. 

7.  When in TIME-WAIT state, TCP client starts a timer and 
waits until the timer goes off. The TIME-WAIT timer is 
set twice the maximum segment lifetime(2MSL). The 
client remains in this state before totally closing to 
ensure that ACK segment it sent was received (if 
another FIN arrives from TCP server, ACK segment is 
retransmitted and the TIME-WAIT timer is restarted at 
2MSL).  

Transport Layer 3-82 Transport Layer 3-83 

TCP server lifecycle 
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TCP server lifecycle(1) 
1.  TCP server starts in CLOSED state 
2.  While in this state, TCP server can receive an passive 

open request from server application program. It, then, 
goes to the LISTEN state 

3.  While LISTEN state, TCP server can receive a SYN 
segment from TCP client. It sends a SYN+ACT segment 
to TCP client and then goes to SYN-RCVD state.  

4.  While in SYN-RCVD state, TCP server can receive an 
ACK segment from client TCP. It, then, goes to 
ESTABLISHED (data transfer) state. TCP client remains 
in this state as long as it sends and receives data.  

Transport Layer 3-85 

TCP server lifecycle(2) 
5.  While in ESTABLISTED state, TCP server can receive a 

FIN segment from TCP client, which means that client 
wants to close the connection. TCP server then sends an  
ACK segment to TCP client and goes to CLOSE-WAIT 
state.  

6.  While in CLOSE-WAIT state, TCP server waits until it 
receives a close request from its own server program/
applications. It then sends a FIN segment from TCP client 
and goes to LAST-ACK state. 

7.  When in LAST-ACK state, TCP server waits for the last 
ACK segment. It then goes to CLOSED state.   

Transport Layer 3-86 Transport Layer 3-87 

Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 



13 

Transport Layer 3-88 

congestion: 
  informally: “too many sources sending too much 

data too fast for network to handle” 
  different from flow control! 
  manifestations: 

 lost packets (buffer overflow at routers) 
 long delays (queueing in router buffers) 

  a top-10 problem! 

Principles of congestion control 

Transport Layer 3-89 

Causes/costs of congestion: scenario 1  

  two senders, two 
receivers 

  one router, infinite 
buffers  

  output link capacity: R 
  no retransmission 

  maximum per-connection 
throughput: R/2 

unlimited shared 
output link buffers 

Host A 

original data: λin  

Host B 

throughput: λout 

R/2 

R/2 

λ o
ut

 

λin R/2 

de
la

y  

λin 
  large delays as arrival rate, 

λin, approaches capacity 

Transport Layer 3-90 

  one router, finite buffers  
  sender retransmission of timed-out packet 

  application-layer input = application-layer output: λin = 
λout 

  transport-layer input includes retransmissions : λin    λin 

finite shared output 
link buffers 

Host A 

λin : original data 

Host B 

λout λ'in: original data, plus 
retransmitted data 

‘ 

Causes/costs of congestion: scenario 2  

Transport Layer 3-91 

idealization: perfect 
knowledge 

  sender sends only when 
router buffers available  

finite shared output 
link buffers 

λin : original data 
λout λ'in: original data, plus 

retransmitted data 
copy 

free buffer space! 

R/2 

R/2 

λ o
ut

 

λin 

Causes/costs of congestion: scenario 2  

Host B 

A 
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λin : original data 
λout λ'in: original data, plus 

retransmitted data 
copy 

no buffer space! 

Idealization: known loss 
packets can be lost, 
dropped at router due  
to full buffers 

  sender only resends if 
packet known to be lost 

Causes/costs of congestion: scenario 2  

A 

Host B 
Transport Layer 3-93 

λin : original data 
λout λ'in: original data, plus 

retransmitted data 

free buffer space! 

Causes/costs of congestion: scenario 2  
Idealization: known loss 

packets can be lost, 
dropped at router due  
to full buffers 

  sender only resends if 
packet known to be lost 

R/2 

R/2 λin 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions but 
asymptotic goodput 
is still R/2 (why?) 

A 

Host B 

Transport Layer 3-94 

A 

λin 
λout λ'in copy 

free buffer space! 

timeout 

R/2 

R/2 λin 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered! 

Host B 

Realistic: duplicates  
  packets can be lost, dropped 

at router due  to full buffers 
  sender times out prematurely, 

sending two copies, both of 
which are delivered 

Causes/costs of congestion: scenario 2  

Transport Layer 3-95 

R/2 

λ o
ut

 

when sending at R/2, 
some packets are 
retransmissions 
including duplicated 
that are delivered! 

“costs” of congestion:  
  more work (retrans) for given “goodput” 
  unneeded retransmissions: link carries multiple copies of pkt 

  decreasing goodput 

R/2 λin 

Causes/costs of congestion: scenario 2  
Realistic: duplicates  
  packets can be lost, dropped 

at router due  to full buffers 
  sender times out prematurely, 

sending two copies, both of 
which are delivered 
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  four senders 
  multihop paths 
  timeout/retransmit 

Q: what happens as λin and λin
’ 

increase ? 

finite shared output 
link buffers 

Host A λout 

Causes/costs of congestion: scenario 3  

Host B 

Host C 
Host D 

λin : original data 
λ'in: original data, plus 

retransmitted data 

A: as red  λin
’ increases, all arriving 

blue pkts at upper queue are 
dropped, blue throughput  0 

Transport Layer 3-97 

another “cost” of congestion:  
  when packet dropped, any “upstream” 

transmission capacity used for that packet was 
wasted! 

Causes/costs of congestion: scenario 3  

C/2 

C/2 

λ o
ut 

λin
’ 
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Approaches towards congestion control 

two broad approaches towards congestion control: 

end-end congestion 
control: 

  no explicit feedback 
from network 

  congestion inferred 
from end-system 
observed loss, delay 

  approach taken by 
TCP 

network-assisted 
congestion control: 

  routers provide 
feedback to end systems 
 single bit indicating 

congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM) 

 explicit rate for 
sender to send at 

Transport Layer 3-99 

Case study: ATM ABR congestion control 

ABR: available bit rate: 
  “elastic service”  
  if sender’s path 
“underloaded”:  
  sender should use 

available bandwidth 
  if sender’s path 

congested:  
  sender throttled to 

minimum guaranteed 
rate 

RM (resource management) 
cells: 

  sent by sender, interspersed 
with data cells 

  bits in RM cell set by switches 
(“network-assisted”)  
 NI bit: no increase in rate 

(mild congestion) 
 CI bit: congestion 

indication 
  RM cells returned to sender 

by receiver, with bits intact 
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Transport Layer 3-100 

Case study: ATM ABR congestion control 

  two-byte ER (explicit rate) field in RM cell 
  congested switch may lower ER value in cell 
  senders’ send rate thus max supportable rate on path 

  EFCI bit in data cells: set to 1 in congested switch 
  if data cell preceding RM cell has EFCI set, receiver sets 

CI bit in returned RM cell 

RM cell data cell 

Transport Layer 3-101 

Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
  segment structure 
  reliable data transfer 
  flow control 
  connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 

Transport Layer 3-102 

TCP congestion control: additive increase 
multiplicative decrease 

  approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs 
 additive increase: increase  congestion window 

(cwnd) by 1 MSS every RTT until loss detected 
 multiplicative decrease: cut cwnd in half after loss  

c
w
n
d
:

 T
C

P 
se

nd
er

  
co

ng
es

tio
n 

w
in

do
w

 s
iz
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AIMD saw tooth 
behavior: probing 

for bandwidth 

additively increase window size … 
…. until loss occurs (then cut window in half) 

time 
Transport Layer 3-103 

TCP Congestion Control: details 

  sender limits transmission: 

  cwnd is dynamic, function 
of perceived network 
congestion 

TCP sending rate: 
  roughly: send cwnd 

bytes, wait RTT for 
ACKS, then send 
more bytes 

last byte 
ACKed sent, not-

yet ACKed 
(“in-
flight”) 

last byte 
sent 

cwnd 

LastByteSent- 
 LastByteAcked 

< cwnd 

sender sequence number space  

rate ~ ~ 
cwnd 

RTT 
bytes/sec 
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Transport Layer 3-104 

TCP Slow Start  

  when connection begins, 
increase rate 
exponentially until first 
loss event: 
  initially cwnd = 1 MSS 
  double cwnd every RTT 
  done by incrementing 
cwnd for every ACK 
received 

  summary: initial rate is 
slow but ramps up 
exponentially fast 

Host A 

one segment 

R
TT

 

Host B 

time 

two segments 

four segments 

Transport Layer 3-105 

TCP: detecting, reacting to loss 

  loss indicated by timeout: 
 cwnd set to 1 MSS;  
 window then grows exponentially (as in slow start) 

to threshold, then grows linearly 
  loss indicated by 3 duplicate ACKs: TCP RENO 

 dup ACKs indicate network capable of  delivering 
some segments  

 cwnd is cut in half window then grows linearly 
  TCP Tahoe always sets cwnd to 1 (timeout or 3 

duplicate acks) 

Transport Layer 3-106 

Q: when should the 
exponential 
increase switch to 
linear?  

A: when cwnd gets 
to 1/2 of its value 
before timeout. 

Implementation: 
  variable ssthresh  
  on loss event, ssthresh 

is set to 1/2 of cwnd just 
before loss event 

TCP: switching from slow start to CA 

Transport Layer 3-107 

Summary: TCP Congestion Control 

timeout 
ssthresh = cwnd/2 

cwnd = 1 MSS 
dupACKcount = 0 

retransmit missing segment  

Λ	

cwnd > ssthresh 

congestion 
avoidance  

cwnd = cwnd + MSS    (MSS/cwnd) 
dupACKcount = 0 

transmit new segment(s), as allowed 

new ACK . 

dupACKcount++ 
duplicate ACK 

fast 
recovery  

cwnd = cwnd + MSS 
transmit new segment(s), as allowed 

duplicate ACK 

ssthresh= cwnd/2 
cwnd = ssthresh + 3 

retransmit missing segment 

dupACKcount == 3 

timeout 
ssthresh = cwnd/2 
cwnd = 1  
dupACKcount = 0 
retransmit missing segment  

ssthresh= cwnd/2 
cwnd = ssthresh + 3 
retransmit missing segment 

dupACKcount == 3 cwnd = ssthresh 
dupACKcount = 0 

New ACK 

slow  
start 

timeout 
ssthresh = cwnd/2  

cwnd = 1 MSS 
dupACKcount = 0 

retransmit missing segment  

cwnd = cwnd+MSS 
dupACKcount = 0 
transmit new segment(s), as allowed 

new ACK dupACKcount++ 
duplicate ACK 

Λ	

cwnd = 1 MSS 

ssthresh = 64 KB 
dupACKcount = 0 

New 
ACK! 

New 
ACK! 

New 
ACK! 
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TCP throughput 
  avg. TCP thruput as function of window size, RTT? 

  ignore slow start, assume always data to send 
  W: window size (measured in bytes) where loss occurs 

  avg. window size (# in-flight bytes) is ¾ W 
  avg. thruput is 3/4W per RTT 

W 

W/2 

avg TCP thruput =  3 
4 

W 
RTT bytes/sec 

Transport Layer 3-109 

fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K 

TCP connection 1 

bottleneck 
router 

capacity R 

TCP Fairness 

TCP connection 2 

Transport Layer 3-110 

Why is TCP fair? 
two competing sessions: 
  additive increase gives slope of 1, as throughout increases 
  multiplicative decrease decreases throughput proportionally  

R 

R 

equal bandwidth share 

Connection 1 throughput 

C
on

ne
ct

io
n 

2 
th

ro
ug

hp
ut

 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 

Transport Layer 3-111 

Fairness (more) 
Fairness and UDP 
  multimedia apps often 

do not use TCP 
  do not want rate 

throttled by congestion 
control 

  instead use UDP: 
  send audio/video at 

constant rate, tolerate 
packet loss 

Fairness, parallel TCP 
connections 

  application can open 
multiple parallel 
connections between two 
hosts 

  web browsers do this  
  e.g., link of rate R with 9 

existing connections: 
  new app asks for 1 TCP, gets rate 

R/10 
  new app asks for 11 TCPs, gets R/2  
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Chapter 3: summary 
  principles behind 

transport layer services: 
 multiplexing, 

demultiplexing 
 reliable data transfer 
 flow control 
 congestion control 

  instantiation, 
implementation in the 
Internet 
 UDP 
 TCP 

next: 
  leaving the 

network 
“edge” (application
, transport layers) 

  into the network 
“core” 

Introduction 1-113 

A note on these slides 

Computer 
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