CSE 3214: Computer Network **Protocols and Applications** -Network Layer

Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 1012C Lassonde Building

Course website: http://wiki.cse.yorku.ca/course_archive/2012-13/W/3214

Chapter 4: network layer

chapter goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing
 - how a router works
 - routing (path selection)
 - broadcast, multicast
- · instantiation, implementation in the Internet

Network Layer 4-2

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing

 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-3

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport
- network layer protocols in every host, router
- * router examines header fields in all IP datagrams passing through it

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- * routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- * routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Connection setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network Laver 4-7

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network Layer 4-8

Network layer service models:

1	Network	Service	Guarantees ?				Congestion
Arch	itecture	Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network Layer 4-9

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
- 4.7 broadcast and multicast routing

Network Layer 4-10

Connection, connection-less service

- datagram network provides network-layer connectionless service
- virtual-circuit network provides network-layer connection service
- analogous to TCP/UDP connection-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core

Network Layer 4-11

Virtual circuits

- "source-to-dest path behaves much like telephone circuit"
 - performance-wise
 - network actions along source-to-dest path
- call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination host address)
- every router on source-dest path maintains "state" for each passing connection
 link, router resources (bandwidth, buffers) may be
- link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service)

Network Layer 4-12

Destinatio	n Address Range	Link Interface
11001000 through	00010111 00010000 00000000	0
	00010111 00010111 11111111	
11001000 through	00010111 00011000 00000000	1
11001000	00010111 00011000 11111111	
11001000 through	00010111 00011001 00000000	2
11001000	00010111 00011111 11111111	
otherwise		3

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination	Link interface			
11001000	00010111	00010***	******	0
11001000	00010111	00011000	******	1
11001000	00010111	00011***	******	2
otherwise				3

examples:

DA: 11001000 00010111 00010110 10100001 DA: 11001000 00010111 00011000 10101010 which interface? which interface?

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - · "elastic" service, no strict timing req.
- many link types
- different characteristics
- uniform service difficult "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"

ATM (VC)

- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
 - "dumb" end systems
 - telephones
 - complexity inside network

Network Layer 4-20

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format IPv4 addressing

 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-21

Router architecture overview

two key router functions:

- run routing algorithms/protocol (RIP, OSPF, BGP)

Input port functions lookup, link layer protocol (receive) switch fabric line termination queueing physical layer: bit-level reception data link layer: decentralized switching: e.g., Ethernet given datagram dest., lookup output port see chapter 5 using forwarding table in input port memory ("match plus action") goal: complete input port processing at ʻline speed' queuing: if datagrams arrive faster than forwarding rate into switch fabric

Switching via interconnection network overcome bus bandwidth limitations banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric. Cisco 12000: switches 60 Gbps through the interconnection network

