Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Routing

- Routing in the Internet combination of rules and procedures that allow router to:
 - Inform one another of "status of" or "changes" in the network
 - Determine "best" routing paths in the network
 - Transfer packets from a source host to a destination host along the best path

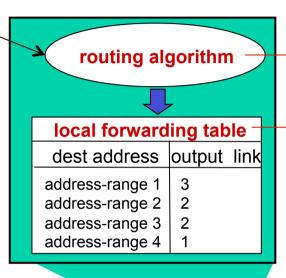
Routing protocol

Routing algorithm

Packet forwarding

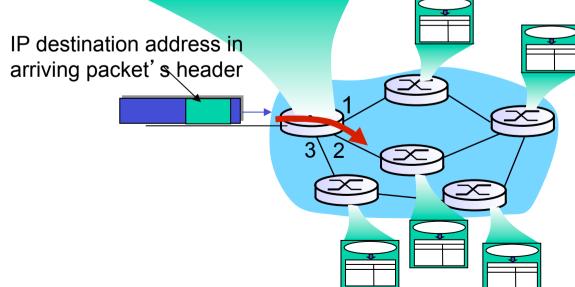
- Internet Routing Goals: accurate, rapid, low cost delivery of packets
 - Route packets away from failed and temporarily congested nodes or links
 - Avoid routing loops
 - Adapt to varying traffic loads
 - Low overhead

Interplay between routing, forwarding



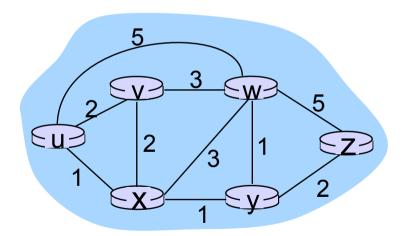
routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router



Routing Algorithm

- Routing Algorithm heart of routing protocol, determines the best path between any two hosts in the network
 - Best path = path that minimizes the objective function that the network operator tries to optimize
 - Possible objective functions:
 - 1. Number of hops
 - 2. End-to-end delay
 - 3. ISP cost, ...



Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

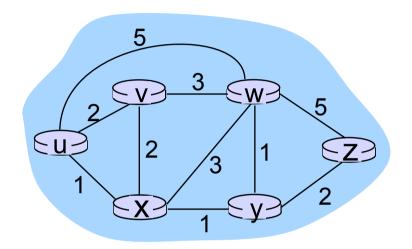
static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Graph abstraction

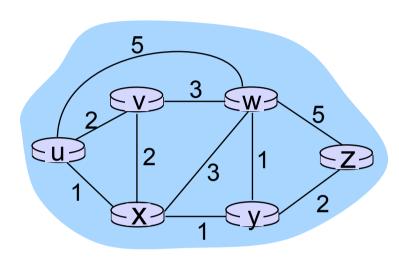


graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Graph abstraction: costs



$$c(x,x') = cost of link (x,x')$$

e.g., $c(w,z) = 5$

$$c(x,x) = 0$$

 $c(x,y) \ge 0$ if nodes directly connected
Cost could be associated with bandwidth
and/or congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k
 iterations, know least cost
 path to k destinations

notation:

- **\Leftrightarrow** C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(V): current value of cost of path from source to v
- p(v): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

```
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
```

notation:

- * C(x,y): link cost from node x to y; cost= ∞ if not direct neighbors
- D(v): current value of cost of path from source to v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

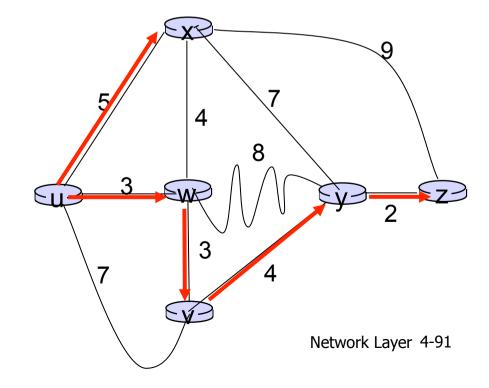
```
find w not in N' such that D(w) is a minimum add w to N'
update D(v) for all v adjacent to w and not in N':
D(v) = min( D(v), D(w) + c(w,v) )
/* new cost to v is either old cost to v or known shortest path cost to w plus cost from w to v */
until all nodes in N'
```

Dijkstra's algorithm: example

Ste	p N'	$D(\mathbf{v}),p(\mathbf{v})$	D(<mark>w</mark>),p(w) D(<mark>x</mark>),p(x) [)(<mark>y</mark>),p(y) l	D(z),p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		5 ,u	11,W	∞
2	uwx	6,w			11,W	14,X
3	UWXV				10,V	14,X
4	uwxvy					(12,y)
5	uwxvyz					

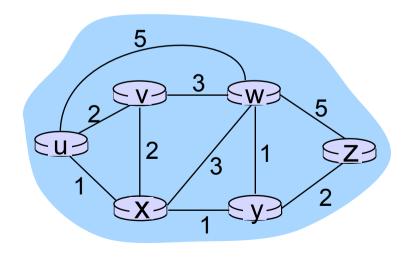
notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)



Dijkstra's algorithm: another example

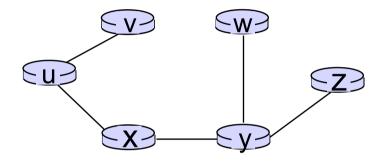
Step	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	2,u	5,u	1,u	∞	∞
1	ux ←	2,u	4,x		2,x	∞
2	uxy	2,u	3,y			4,y
3	uxyv		3,y			4,y
4	uxyvw 🗲					4,y
5	UXVVWZ					



destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



resulting forwarding table in u:

destination	link
V	(u,v)
X	(u,x)
У	(u,x)
W	(u,x)
Z	(u,x)

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

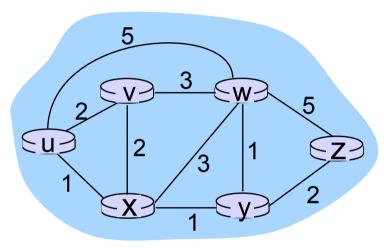
4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Bellman-Ford equation (dynamic programming)

```
let d_x(y) := least\text{-cost path from } x \text{ to } y then d_x(y) = \min_{v \in \mathbb{R}^n} \{c(x,v) + d_v(y)\} cost from neighbor v to destination v cost to neighbor v
```

Bellman-Ford example



clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

$$\mathbf{D}_{v} = [\mathbf{D}_{v}(y): y \in \mathbb{N}]$$

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

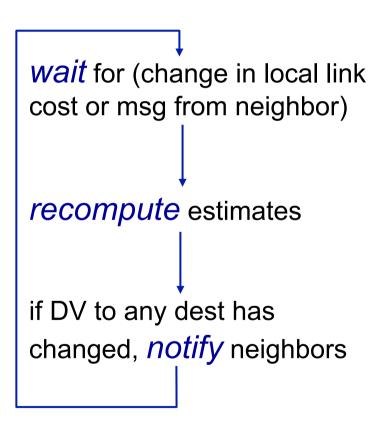
iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

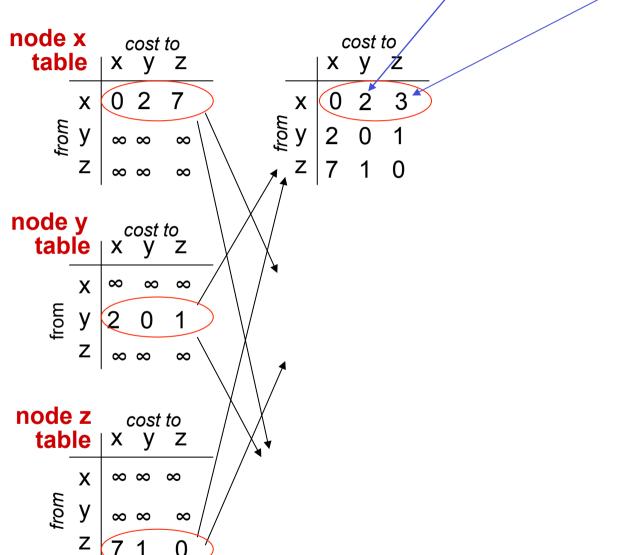
each node:

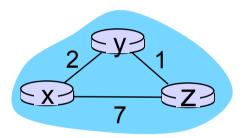


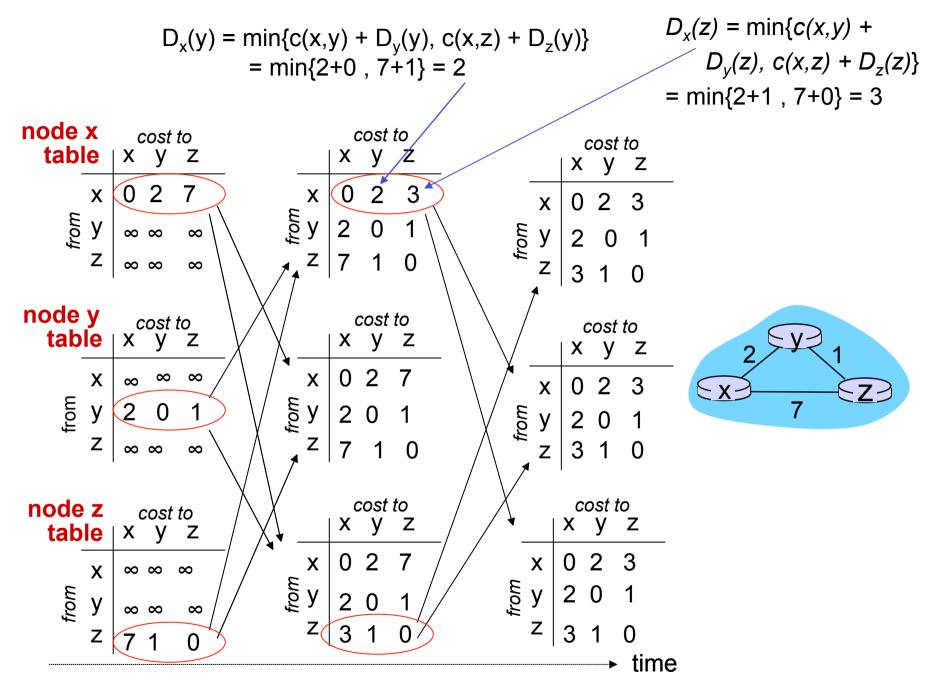
$$D_{x}(y) = \min\{c(x,y) + D_{y}(y), c(x,z) + D_{z}(y)\}$$

= $\min\{2+0, 7+1\} = 2$

 $D_x(z) = \min\{c(x,y) + D_y(z), c(x,z) + D_z(z)\}$ = $\min\{2+1, 7+0\} = 3$



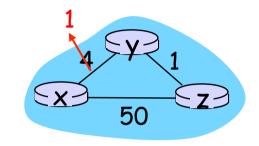




Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors



"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

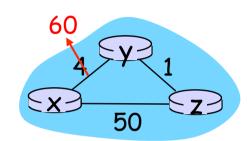
 t_1 : z receives update from y, updates its table, computes new least cost to x, sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text



poisoned reverse:

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

speed of convergence

- LS: O(n²) algorithm requires
 O(nE) msgs
 - may have oscillations
- DV: convergence time varies
 - may be routing loops
 - count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network