Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - · hierarchical routing
- 4.6 routing in the Internet
- RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Laver 4-8

Routing

- * Routing in the Internet combination of rules and procedures that allow router to:
 - Inform one another of "status of" or "changes" in the network

Determine "best" routing paths in the network

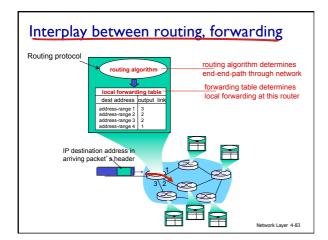
Routing algorithm

Routing protocol

 Transfer packets from a source host to a destination host along the best path

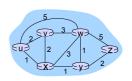
- Packet forwarding
- Internet Routing Goals: accurate, rapid, low cost delivery of packets
 - Route packets away from failed and temporarily congested nodes or links
 - Avoid routing loops
 - Adapt to varying traffic loads
 - Low overhead

Network Layer 4-82



Routing Algorithm

- Routing Algorithm heart of routing protocol, determines the best path between any two hosts in the network
 - Best path = path that minimizes the objective function that the network operator tries to optimize
 - Possible objective functions:
 - 1. Number of hops
 - 2. End-to-end delay
 - 3. ISP cost, ...



Network Layer 4-84

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- * "link state" algorithms decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- "distance vector" algorithms

Q: static or dynamic?

static:

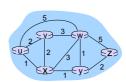
 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Network Laver 4-85

Graph abstraction



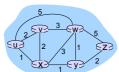
graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $\mathsf{E} = \mathsf{set} \; \mathsf{of} \; \mathsf{links} \; \mathsf{=} \{\; (\mathsf{u},\mathsf{v}), \; (\mathsf{u},\mathsf{x}), \; (\mathsf{v},\mathsf{x}), \; (\mathsf{v},\mathsf{w}), \; (\mathsf{x},\mathsf{w}), \; (\mathsf{x},\mathsf{y}), \; (\mathsf{w},\mathsf{y}), \; (\mathsf{w},\mathsf{z}), \; (\mathsf{y},\mathsf{z}) \; \}$

Network Layer 4-86

Graph abstraction: costs



c(x,x') = cost of link (x,x')e.g., c(w,z) = 5

 $c(x,y) \ge 0$ if nodes directly connected Cost could be associated with bandwidth and/or congestion

cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- link state
- 4.5 routing algorithms distance vector
- hierarchical routing 4.6 routing in the Internet
- RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

notation:

C(X,y): link cost from node x to y; cost=∞ if not direct neighbors D(v): current value of cost of path from source to v

p(v): predecessor node along path from source to

N': set of nodes whose least cost path definitively known

Network Layer 4-88

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- * computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- · iterative: after k iterations, know least cost path to k destinations

notation:

- * C(X,y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source
- p(v): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known

Network Layer 4-89

Dijsktra's Algorithm

- 1 Initialization:
- $N' = \{u\}$ for all nodes v
- if v adjacent to u
- then D(v) = c(u,v)
- else D(v) = ∞
- find w not in N' such that D(w) is a minimum
- update D(v) for all v adjacent to w and not in N' :
- D(v) = min(D(v), D(w) + c(w,v))
 /* new cost to v is either old cost to v or known
- shortest path cost to w plus cost from w to v */
 until all nodes in N'

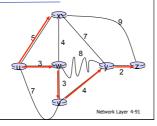
Network Layer 4-90

Dijkstra's algorithm: example

Ste	p N'	D(v),p(v)	D(w),p(w) D(x),p(x)	D(y),p(y)	D(z),p(z)
0	u	7,u	(3,u)	5,u	∞	∞
1	uw	6,w		(5,u)	11,W	∞
2	uwx	6,w			11,W	14,x
3	uwxv				(10,v)	14,X
4	uwxvy					(12,y)
5	uwxvyz					_

notes:

- · construct shortest path tree by tracing predecessor nodes ties can exist (can be broken
- arbitrarily)



Dijkstra's algorithm: another example

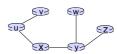
St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux←	2,u	4,x		2,x	∞
	2	uxy⊷	2,u	3,y			4,y
	3	uxyv 🕌		3,y			4,y
	4	uxyvw 🕶					4,y
	5	uxyvwz ←					
						destination	link
			5_			v	(u,v)
			(2 SP)	3 w	5	х	(u,x)
		6	<u>u</u> = 2			у	(u,x)
			- 2	/3	SZ 3	14/	(u.v)

1 X 2

z | (u,x) Network Layer 4-92

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



resulting forwarding table in u:

wai ding table ili u.						
destination	link					
v	(u,v)					
x	(u,x)					
у	(u,x)					
w	(u,x)					
z	(u,x)					

Network Laver 4-9

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
- hierarchical routing4.6 routing in the Internet
- RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-94

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

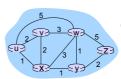
 $d_x(y) := least-cost path from x to y$

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

cost from neighbor v to destination y

Network Layer 4-95

Bellman-Ford example



clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

 $d_u(z) = min \{ c(u,v) + d_v(z), \\ c(u,x) + d_x(z), \\ c(u,w) + d_w(z) \}$ $= min \{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \} = 4$

node achieving minimum is next hop in shortest path, used in forwarding table

Network Layer 4-96

Distance vector algorithm

- $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $\mathbf{D}_x = [\mathbf{D}_x(y): y \in \mathbb{N}]$

min taken over all neighbors v of x

- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors distance vectors. For each neighbor v, x maintains
 D_v = [D_v(y): y ∈ N]

Network Laver 4-97

Distance vector algorithm

key idea:

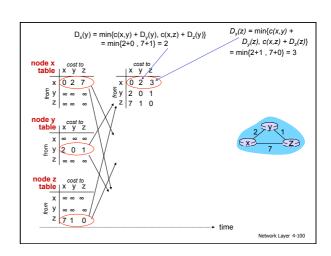
- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

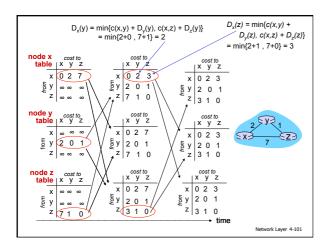
 $D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}\$ for each node $y \in N$

 under minor, natural conditions, the estimate D_x(y) converge to the actual least cost d_x(y)

Network Layer 4-98

Distance vector algorithm iterative, asynchronous: each local iteration each node: caused by: wait for (change in local link local link cost change cost or msg from neighbor) * DV update message from neighbor distributed: recompute estimates each node notifies neighbors *only* when its DV changes if DV to any dest has neighbors then notify their neighbors if necessary changed, notify neighbors





Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- if DV changes, notify neighbors

"good news travels fast" t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 $t_{7}\colon z$ receives update from y, updates its table, computes new least cost to x , sends its neighbors its DV.

 t_2 : y receives z's update, updates its distance table. y's least costs do not change, so y does not send a message to z.

Network Layer 4-102

Distance vector: link cost changes

link cost changes:

- * node detects local link cost change
- bad news travels slow "count to infinity" problem!
- 44 iterations before algorithm stabilizes: see text

poisoned reverse:

- $\, \star \,$ If Z routes through Y to get to X :
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

Network Layer 4-103

Comparison of LS and DV algorithms

message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - · convergence time varies

speed of convergence * LS: O(n²) algorithm requires

- O(nE) msgs
- may have oscillations
 DV: convergence time varies
- may be routing loops
- count-to-infinity problem

robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- each node's table used by
- others
 error propagate thru
 - network

Network Layer 4-104