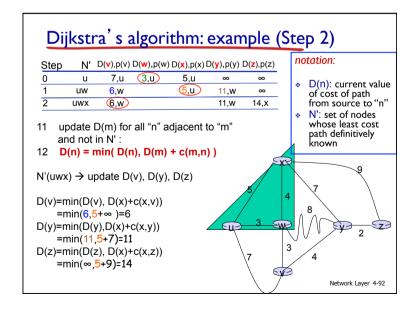
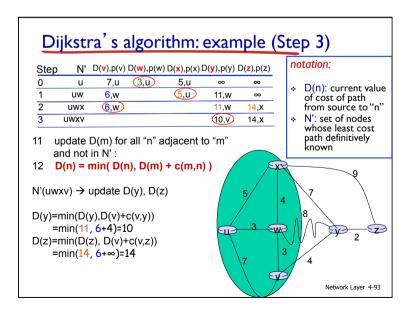
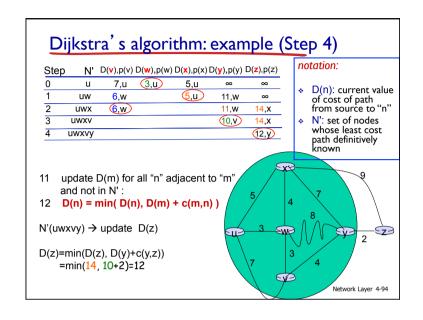
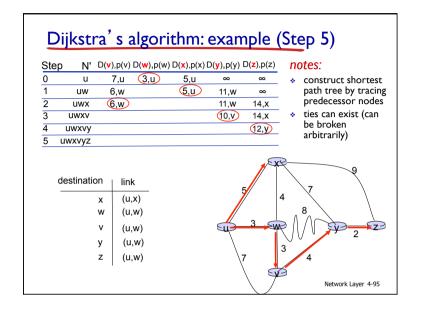
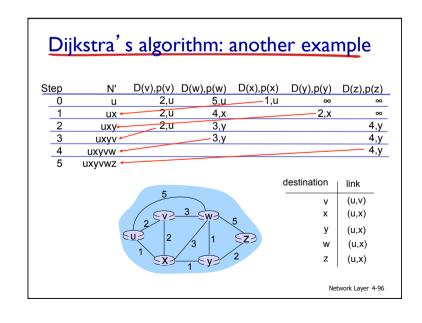
Dijsktra's Algorithm


```
1 Initialization:
2 N' = {s}
3 for all nodes "n"
4 If "n" adjacent to "s"
5 then D(n) = c(s,n)
6 else D(n) = ∞
7
8 Loop
```


notation:


- C(x,y): link cost from node x to y; cost= ∞ if not direct neighbors
- D(n): current value of cost of path from source to "n"
- P(n): predecessor node along path from source to
- N': set of nodes whose least cost path definitively known
- 9 Find "m" not in N' such that D(m) is a minimum
- 10 Add "m" to N'
- 11 update D(m) for all "n" adjacent to "m" and not in N':
- 12 D(n) = min(D(n), D(m) + c(m,n))
- 13 /* new cost to "n" is either old cost to "n" or known
- 14 shortest path cost to "m" plus cost from "m" to "n" */
- 15 until all nodes in N'


Network Layer 4-90


Dijkstra's algorithm: example (Step I) notation: N' $D(\mathbf{v}),p(\mathbf{v})$ $D(\mathbf{w}),p(\mathbf{w})$ $D(\mathbf{x}),p(\mathbf{x})$ $D(\mathbf{y}),p(\mathbf{y})$ $D(\mathbf{z}),p(\mathbf{z})$ 0 u 7,u (3,u) 5,u D(n): current value 6.w (5,u) of cost of path from source to "n" update D(m) for all "n" adjacent to "m" N': set of nodes whose least cost and not in N': path definitively 12 D(n) = min(D(n), D(m) + c(m,n)) $N'(uw) \rightarrow update D(v), D(x), D(y), D(z)$ D(v)=min(D(v), D(w)+c(w,v))=min(7,3+3)=6D(x)=min(D(x), D(w)+c(w,x))=min(5,3+4)=5D(v)=min(D(v), D(w)+c(w,v)) $=\min(\infty, 3+8)=11$ D(z)=min(D(z), D(w)+c(w,z)) $=\min(\infty, 3+\infty)=\infty$ Network Layer 4-91

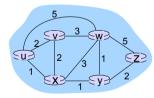
Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-98

Distance vector algorithm


Bellman-Ford equation (dynamic programming)

```
let d_{x}(y) := \text{ least-cost path from } x \text{ to } y then d_{x}(y) = \min_{v} \left\{ c(x,v) + d_{v}(y) \right\} cost from neighbor v to destination y cost to neighbor v
```

min taken over all neighbors v of x

Network Layer 4-99

Bellman-Ford example

clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$\begin{aligned} d_{u}(z) &= \min \left\{ \begin{array}{l} c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \end{array} \right\} \\ &= \min \left\{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \right\} = 4 \end{aligned}$$

node achieving minimum is next hop in shortest path, used in forwarding table

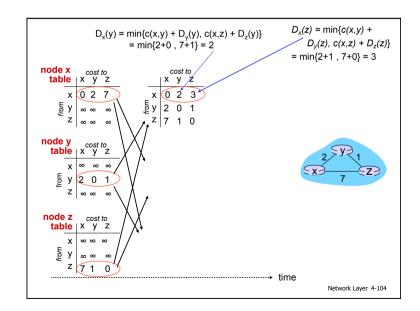
Network Layer 4-100

Distance vector algorithm

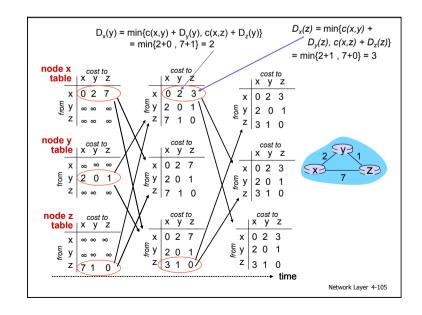
- $D_x(y) = \text{estimate of least cost from } x \text{ to } y$
 - x maintains distance vector D_x = [D_x(y): y ∈ N]
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains

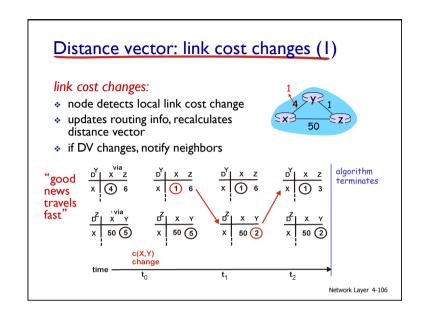
$$\mathbf{D}_{v} = [D_{v}(y): y \in \mathbb{N}]$$

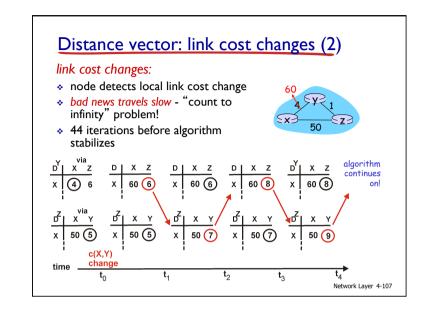
Distance vector algorithm

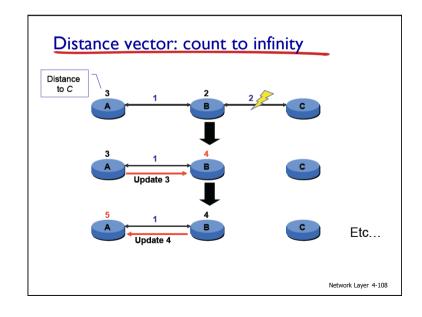

key idea:

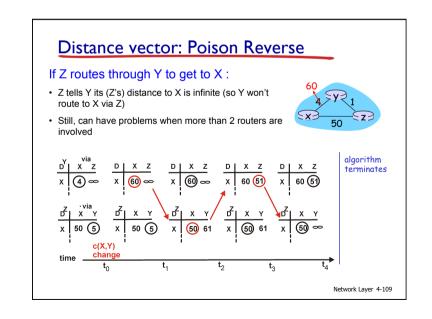
- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:


$$D_{x}(y) \leftarrow min_{v}\{c(x,v) + D_{v}(y)\}\$$
 for each node $y \in N$


* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_y(y)$


Network Layer 4-102




Distance vector algorithm each node: iterative. asynchronous: each local iteration caused by: wait for (change in local link local link cost change cost or msg from neighbor) DV update message from neighbor distributed: recompute estimates each node notifies $D_{\nu}(y) \leftarrow min_{\nu}\{c(x,v) + D_{\nu}(y)\}$ neighbors only when its DV changes if DV to any dest has neighbors then notify their changed, notify neighbors neighbors if necessary

Comparison of LS and DV algorithms

	Link State	Distance Vector
size of (update) routing info	small, contains only neighbours' link costs	potentially long distance vectors
communication overhead	flood to all nodes – overhead O(N*E), where N = # of nodes, E = # of edges	send distance vectors only to neighbours – O(N*K) if each of N routers has K neighbours
convergence speed	do NOT need to recalculate LSP's before forwarding ⇒ faster _⑤	takes a while to propagate changes to rest of network
space requirements	maintains entire topology in a link database – O(N*K) if each of N routers has K neighbours	maintains only neighbours' states – O(K) distance vectors
computational complexity per one destination	O(N*(N-1)/2)=O(N ²)	O(N*K*Diameter)
computational robustness	each router computes paths on its own – no error propagation	routers compute paths collectively – errors propagate
security / fault tolerance	false/corrupt LSPs can be flooded to all routers	false/corrupt LSPs can be flooded to all routers

Network Layer 4-110

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-111

Hierarchical routing

our routing study thus far - idealization

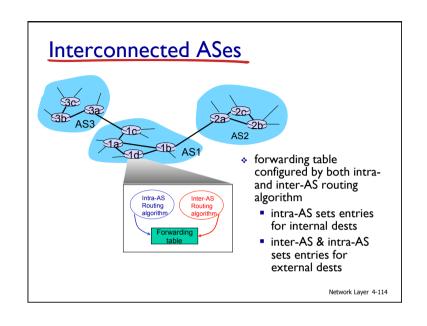
- all routers identical
- network "flat"
- ... not true in practice

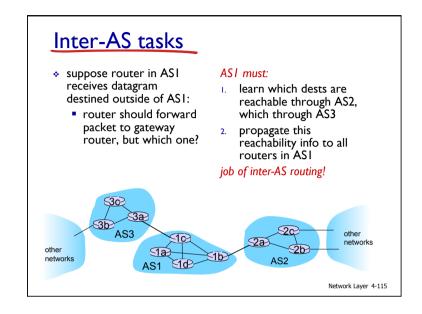
scale: with 600 million destinations:

- can't store all dest's in routing tables!
- routing table exchange would swamp links!

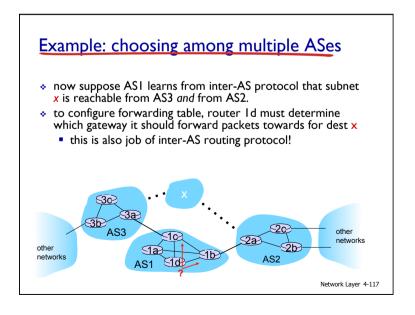
administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network


Network Layer 4-112


Hierarchical routing

- aggregate routers into regions, "autonomous systems" (AS)
- routers in same AS run same routing protocol
 - "intra-AS" routing protocol
 - routers in different AS can run different intra-AS routing protocol


gateway router:

- at "edge" of its own AS
- has link to router in another AS

* suppose ASI learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway Ic), but not via AS2 • inter-AS protocol propagates reachability info to all internal routers * router Id determines from intra-AS routing info that its interface I is on the least cost path to Ic • installs forwarding table entry (x,I) Other networks AS3 Other networks

Example: choosing among multiple ASes

- now suppose ASI learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x
 - this is also job of inter-AS routing protocol!
- hot potato routing: send packet towards closest of two routers.

learn from inter-AS protocol that subnet x is reachable via multiple gateways use routing info from intra-AS protocol to determine costs of least-cost paths to each of the gateways

hot potato routing: choose the gateway that has the smallest least cost determine from forwarding table the interface / that leads to least-cost gateway Enter (x,I) in forwarding table

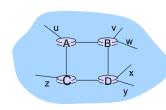
Network Layer 4-118

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

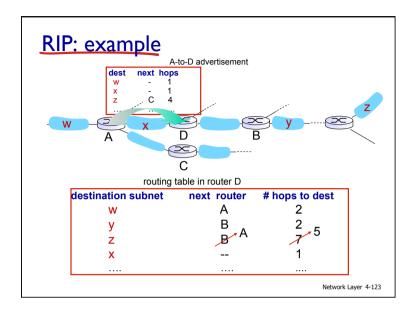
Network Layer 4-119


Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

Network Layer 4-120

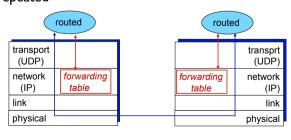
RIP (Routing Information Protocol)


- distance vector algorithm
 - distance metric: # hops (max = 15 hops), each link has cost 1
 - DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination subnets:

subnet	hop	
u	1	
V	2	
W	2	
Х	3	
у	3	
z	2	

RIP: link failure, recovery


if no advertisement heard after 180 sec --> neighbor/ link declared dead

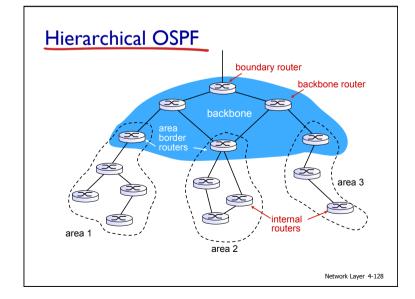
- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

Network Layer 4-124

RIP table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

OSPF (Open Shortest Path First)


- "open": publicly available
- uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra's algorithm
- OSPF advertisement carries one entry per neighbor
- * advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
- * IS-IS routing protocol: nearly identical to OSPF

Network Layer 4-126

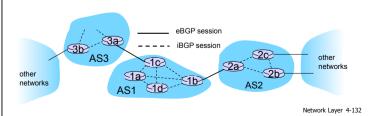
OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)
- integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- * hierarchical OSPF in large domains.

Network Layer 4-127

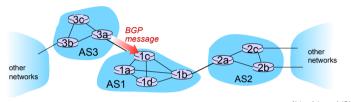
Hierarchical OSPF

- * two-level hierarchy: local area, backbone.
 - Iink-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- * area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- boundary routers: connect to other AS's.


Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- * BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs.
 - iBGP: propagate reachability information to all Asinternal routers.
 - determine "good" routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "I am here"

Network Layer 4-130


BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - Ic can then use iBGP do distribute new prefix info to all routers in ASI
 - Ib can then re-advertise new reachability info to AS2 over Ibto-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to ASI:
 - AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

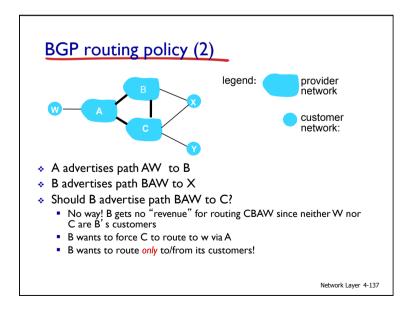
Network Layer 4-131

Path attributes and BGP routes

- advertised prefix includes BGP attributes
 - prefix + attributes = "route"
- two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (may be multiple links from current AS to next-hop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

BGP route selection

- router may learn about more than I route to destination AS, selects route based on:
 - I. local preference value attribute: policy decision
 - 2. shortest AS-PATH
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria


Network Layer 4-134

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Network Layer 4-135

BGP routing policy legend: provider network customer network: A,B,C are provider networks X,W,Y are customer (of provider networks) X is dual-homed: attached to two networks X does not want to route from B via X to C . so X will not advertise to B a route to C

Why different Intra-, Inter-AS routing?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed

scale:

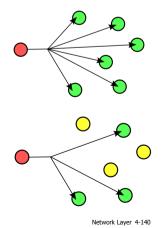
hierarchical routing saves table size, reduced update

berformance:

- intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

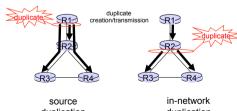
Network Layer 4-138

Chapter 4: outline


- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Network Layer 4-139


Broadcast and multicast routing

- One to many communications
- Broadcast delivering a packet sent from a source node to all other nodes in the network
- Multicast a single source node to send a copy of a packet to a subset of the other network nodes.

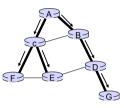
Broadcast

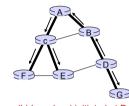
- deliver packets from source to all other nodes
- source duplication is inefficient:

duplication

duplication

 source duplication: how does source determine recipient addresses?

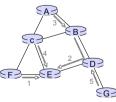

In-network duplication

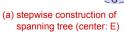

- flooding: when node receives broadcast packet, sends copy to all neighbors
 - problems: cycles & broadcast storm
- controlled flooding: node only broadcasts pkt if it hasn't broadcast same packet before
 - node keeps track of packet ids already broadacsted
 - or reverse path forwarding (RPF): only forward packet if it arrived on shortest path between node and source
- spanning tree:
 - no redundant packets received by any node

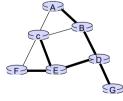
Network Layer 4-142

Spanning tree

- first construct a spanning tree
- nodes then forward/make copies only along spanning tree


(a) broadcast initiated at A


(b) broadcast initiated at D


Network Layer 4-143

Spanning tree: creation

- center node
- each node sends unicast join message to center node
 - message forwarded until it arrives at a node already belonging to spanning tree

(b) constructed spanning

Network Layer 4-144

Multicast

- * goal: sending a packet to a group of members
- Benefits of multicast
 - better bandwidth utilization
 - less host/router processing
 - quicker participation
- Applications
 - Video/Audio broadcast (One sender)
 - Video conferencing (Many senders)
 - Real time news distribution
 - Interactive gaming

Internet multicast

- Senders transmit IP datagrams to a "host group"
- * "Host group" identified by a class D IP address
- Members of host group could be present anywhere in the Internet
- Members join and leave the group and indicate this to the routers
- Routers listen to all multicast addresses and use multicast routing protocols to manage groups
- Routing protocols:
 - DVMRP: distance vector multicast routing protocol, RFC1075
 - PIM: protocol independent multicast

Network Layer 4-146

A note on these slides

Part of PPT slides were adopted from Prof. Natalija Vlajic' early CSE3214 course and the rest were adopted from the book "Computer Networking: A Top Down Approach" 6th Edition by Jim Kurose and Keith Ross

Computer Networking: A Top Down Approach

6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

All material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Introduction 1-148

Chapter 4: done!

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format, IPv4 addressing, ICMP, IPv6
- 4.5 routing algorithms
 - link state, distance vector, hierarchical routing
- 4.6 routing in the Internet
 - RIP, OSPF, BGP
- 4.7 broadcast and multicast routing
- understand principles behind network layer services:
 - network layer service models, forwarding versus routing how a router works, routing (path selection), broadcast, multicast
- instantiation, implementation in the Internet