

Wireshark Lab: HTTP v6.1

Supplement to Computer Networking: A Top-Down
Approach, 6th ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

Having gotten our feet wet with the Wireshark packet sniffer in the introductory lab,
we’re now ready to use Wireshark to investigate protocols in operation. In this lab, we’ll
explore several aspects of the HTTP protocol: the basic GET/response interaction, HTTP
message formats, retrieving large HTML files, retrieving HTML files with embedded
objects, and HTTP authentication and security. Before beginning these labs, you might
want to review Section 2.2 of the text.1

1. The Basic HTTP GET/response interaction

Let’s begin our exploration of HTTP by downloading a very simple HTML file - one that
is very short, and contains no embedded objects. Do the following:

1. Start up your web browser.
2. Start up the Wireshark packet sniffer, as described in the Introductory lab (but

don’t yet begin packet capture). Enter “http” (just the letters, not the quotation
marks) in the display-filter-specification window, so that only captured HTTP
messages will be displayed later in the packet-listing window. (We’re only
interested in the HTTP protocol here, and don’t want to see the clutter of all
captured packets).

3. Wait a bit more than one minute (we’ll see why shortly), and then begin
Wireshark packet capture.

4. Enter the following to your browser
http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file1.html
Your browser should display the very simple, one-line HTML file.

5. Stop Wireshark packet capture.

1 References to figures and sections are for the 6th edition of our text, Computer Networks, A Top-down
Approach, 6th ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

CSE3214 Lab 2: Wireshark HTTP and DNS

The lab materials are adopted from the Supplement to "Computer Networking: A Top-Down Approach",

6th ed., by J.F. Kuros and K.W. Ross.

This lab investigates two protocols, HTTP and DNS. For lab report, please answer all

questions listed in the Lab manual. You are required to capture the screens that related to

questions listed in the lab manual. These screenshots should be included in your answers.

Your Wireshark window should look similar to the window shown in Figure 1. If you
are unable to run Wireshark on a live network connection, you can download a packet
trace that was created when the steps above were followed.2

Figure 1: Wireshark Display after http://gaia.cs.umass.edu/wireshark-labs/ HTTP-
wireshark-file1.html has been retrieved by your browser

The example in Figure 1 shows in the packet-listing window that two HTTP messages
were captured: the GET message (from your browser to the gaia.cs.umass.edu web
server) and the response message from the server to your browser. The packet-contents
window shows details of the selected message (in this case the HTTP OK message,
which is highlighted in the packet-listing window). Recall that since the HTTP message
was carried inside a TCP segment, which was carried inside an IP datagram, which was
carried within an Ethernet frame, Wireshark displays the Frame, Ethernet, IP, and TCP
packet information as well. We want to minimize the amount of non-HTTP data
displayed (we’re interested in HTTP here, and will be investigating these other protocols
is later labs), so make sure the boxes at the far left of the Frame, Ethernet, IP and TCP
information have a plus sign or a right-pointing triangle (which means there is hidden,
undisplayed information), and the HTTP line has a minus sign or a down-pointing
triangle (which means that all information about the HTTP message is displayed).

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip and extract the file
http-ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the http-ethereal-trace-1 trace file. The resulting display should look similar to Figure 1.
(The Wireshark user interface displays just a bit differently on different operating systems, and in different
versions of Wireshark).

(Note: You should ignore any HTTP GET and response for favicon.ico. If you see a reference to
this file, it is your browser automatically asking the server if it (the server) has a small icon file
that should be displayed next to the displayed URL in your browser. We’ll ignore references to
this pesky file in this lab.).

By looking at the information in the HTTP GET and response messages, answer the
following questions. When answering the following questions, you should print out the
GET and response messages (see the introductory Wireshark lab for an explanation of
how to do this) and indicate where in the message you’ve found the information that
answers the following questions. When you hand in your assignment, annotate the output
so that it’s clear where in the output you’re getting the information for your answer (e.g.,
for our classes, we ask that students markup paper copies with a pen, or annotate
electronic copies with text in a colored font).

1. Is your browser running HTTP version 1.0 or 1.1? What version of HTTP is the
server running?

2. What languages (if any) does your browser indicate that it can accept to the
server?

3. What is the IP address of your computer? Of the gaia.cs.umass.edu server?
4. What is the status code returned from the server to your browser?
5. When was the HTML file that you are retrieving last modified at the server?
6. How many bytes of content are being returned to your browser?
7. By inspecting the raw data in the packet content window, do you see any headers

within the data that are not displayed in the packet-listing window? If so, name
one.

In your answer to question 5 above, you might have been surprised to find that the
document you just retrieved was last modified within a minute before you downloaded
the document. That’s because (for this particular file), the gaia.cs.umass.edu server is
setting the file’s last-modified time to be the current time, and is doing so once per
minute. Thus, if you wait a minute between accesses, the file will appear to have been
recently modified, and hence your browser will download a “new” copy of the document.

2. The HTTP CONDITIONAL GET/response interaction

Recall from Section 2.2.6 of the text, that most web browsers perform object caching and
thus perform a conditional GET when retrieving an HTTP object. Before performing the
steps below, make sure your browser’s cache is empty. (To do this under Firefox, select
Tools->Clear Recent History and check the Cache box, or for Internet Explorer, select
Tools->Internet Options->Delete File; these actions will remove cached files from your
browser’s cache.) Now do the following:

• Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.

• Start up the Wireshark packet sniffer
• Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file2.html
Your browser should display a very simple five-line HTML file.

• Quickly enter the same URL into your browser again (or simply select the refresh
button on your browser)

• Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed later in the
packet-listing window.

• (Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-2 packet trace to answer the questions below; see
footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Answer the following questions:

8. Inspect the contents of the first HTTP GET request from your browser to the
server. Do you see an “IF-MODIFIED-SINCE” line in the HTTP GET?

9. Inspect the contents of the server response. Did the server explicitly return the
contents of the file? How can you tell?

10. Now inspect the contents of the second HTTP GET request from your browser to
the server. Do you see an “IF-MODIFIED-SINCE:” line in the HTTP GET? If
so, what information follows the “IF-MODIFIED-SINCE:” header?

11. What is the HTTP status code and phrase returned from the server in response to
this second HTTP GET? Did the server explicitly return the contents of the file?
Explain.

3. Retrieving Long Documents

In our examples thus far, the documents retrieved have been simple and short HTML
files. Let’s next see what happens when we download a long HTML file. Do the
following:

• Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.

• Start up the Wireshark packet sniffer
• Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file3.html
Your browser should display the rather lengthy US Bill of Rights.

• Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed.

• (Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-3 packet trace to answer the questions below; see
footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

In the packet-listing window, you should see your HTTP GET message, followed by a
multiple-packet TCP response to your HTTP GET request. This multiple-packet
response deserves a bit of explanation. Recall from Section 2.2 (see Figure 2.9 in the
text) that the HTTP response message consists of a status line, followed by header lines,
followed by a blank line, followed by the entity body. In the case of our HTTP GET, the

entity body in the response is the entire requested HTML file. In our case here, the
HTML file is rather long, and at 4500 bytes is too large to fit in one TCP packet. The
single HTTP response message is thus broken into several pieces by TCP, with each
piece being contained within a separate TCP segment (see Figure 1.24 in the text). In
recent versions of Wireshark, Wireshark indicates each TCP segment as a separate
packet, and the fact that the single HTTP response was fragmented across multiple TCP
packets is indicated by the “TCP segment of a reassembled PDU” in the Info column of
the Wireshark display. Earlier versions of Wireshark used the “Continuation” phrase to
indicated that the entire content of an HTTP message was broken across multiple TCP
segments.. We stress here that there is no “Continuation” message in HTTP!

Answer the following questions:

12. How many HTTP GET request messages did your browser send? Which packet
number in the trace contains the GET message for the Bill or Rights?

13. Which packet number in the trace contains the status code and phrase associated
with the response to the HTTP GET request?

14. What is the status code and phrase in the response?
15. How many data-containing TCP segments were needed to carry the single HTTP

response and the text of the Bill of Rights?

4. HTML Documents with Embedded Objects

Now that we’ve seen how Wireshark displays the captured packet traffic for large HTML
files, we can look at what happens when your browser downloads a file with embedded
objects, i.e., a file that includes other objects (in the example below, image files) that are
stored on another server(s).

Do the following:

• Start up your web browser, and make sure your browser’s cache is cleared, as
discussed above.

• Start up the Wireshark packet sniffer
• Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HTTP-wireshark-file4.html
Your browser should display a short HTML file with two images. These two
images are referenced in the base HTML file. That is, the images themselves are
not contained in the HTML; instead the URLs for the images are contained in the
downloaded HTML file. As discussed in the textbook, your browser will have to
retrieve these logos from the indicated web sites. Our publisher’s logo is
retrieved from the www.aw-bc.com web site. The image of the cover for our 5th
edition (one of our favorite covers) is stored at the manic.cs.umass.edu server.

• Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed.

• (Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-4 packet trace to answer the questions below; see

footnote 1. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Answer the following questions:

16. How many HTTP GET request messages did your browser send? To which
Internet addresses were these GET requests sent?

17. Can you tell whether your browser downloaded the two images serially, or
whether they were downloaded from the two web sites in parallel? Explain.

5 HTTP Authentication

Finally, let’s try visiting a web site that is password-protected and examine the sequence
of HTTP message exchanged for such a site. The URL
http://gaia.cs.umass.edu/wireshark-labs/protected_pages/HTTP-wireshark-file5.html is
password protected. The username is “wireshark-students” (without the quotes), and the
password is “network” (again, without the quotes). So let’s access this “secure”
password-protected site. Do the following:

• Make sure your browser’s cache is cleared, as discussed above, and close down
your browser. Then, start up your browser

• Start up the Wireshark packet sniffer
• Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/protected_pages/HTTP-wireshark-
file5.html
Type the requested user name and password into the pop up box.

• Stop Wireshark packet capture, and enter “http” in the display-filter-specification
window, so that only captured HTTP messages will be displayed later in the
packet-listing window.

• (Note: If you are unable to run Wireshark on a live network connection, you can
use the http-ethereal-trace-5 packet trace to answer the questions below; see
footnote 2. This trace file was gathered while performing the steps above on one
of the author’s computers.)

Now let’s examine the Wireshark output. You might want to first read up on HTTP
authentication by reviewing the easy-to-read material on “HTTP Access Authentication
Framework” at http://frontier.userland.com/stories/storyReader$2159

Answer the following questions:
18. What is the server’s response (status code and phrase) in response to the initial

HTTP GET message from your browser?
19. When your browser’s sends the HTTP GET message for the second time, what

new field is included in the HTTP GET message?

The username (wireshark-students) and password (network) that you entered are encoded
in the string of characters (d2lyZXNoYXJrLXN0dWRlbnRzOm5ldHdvcms=) following
the “Authorization: Basic” header in the client’s HTTP GET message. While it
may appear that your username and password are encrypted, they are simply encoded in a

format known as Base64 format. The username and password are not encrypted! To see
this, go to http://www.motobit.com/util/base64-decoder-encoder.asp and enter the
base64-encoded string d2lyZXNoYXJrLXN0dWRlbnRz and decode. Voila! You have
translated from Base64 encoding to ASCII encoding, and thus should see your username!
To view the password, enter the remainder of the string Om5ldHdvcms= and press
decode. Since anyone can download a tool like Wireshark and sniff packets (not just
their own) passing by their network adaptor, and anyone can translate from Base64 to
ASCII (you just did it!), it should be clear to you that simple passwords on WWW sites
are not secure unless additional measures are taken.

Fear not! As we will see in Chapter 8, there are ways to make WWW access more secure.
However, we’ll clearly need something that goes beyond the basic HTTP authentication
framework!

Wireshark Lab: DNS v6.01

Supplement to Computer Networking: A Top-Down
Approach, 6th ed., J.F. Kurose and K.W. Ross

“Tell me and I forget. Show me and I remember. Involve me and I
understand.” Chinese proverb

© 2005-21012, J.F Kurose and K.W. Ross, All Rights Reserved

As described in Section 2.5 of the text1, the Domain Name System (DNS) translates
hostnames to IP addresses, fulfilling a critical role in the Internet infrastructure. In this
lab, we’ll take a closer look at the client side of DNS. Recall that the client’s role in the
DNS is relatively simple – a client sends a query to its local DNS server, and receives a
response back. As shown in Figures 2.21 and 2.22 in the textbook, much can go on
“under the covers,” invisible to the DNS clients, as the hierarchical DNS servers
communicate with each other to either recursively or iteratively resolve the client’s DNS
query. From the DNS client’s standpoint, however, the protocol is quite simple – a query
is formulated to the local DNS server and a response is received from that server.

Before beginning this lab, you’ll probably want to review DNS by reading Section 2.5 of
the text. In particular, you may want to review the material on local DNS servers, DNS
caching, DNS records and messages, and the TYPE field in the DNS record.

1. nslookup

In this lab, we’ll make extensive use of the nslookup tool, which is available in most
Linux/Unix and Microsoft platforms today. To run nslookup in Linux/Unix, you just type
the nslookup command on the command line. To run it in Windows, open the Command
Prompt and run nslookup on the command line.

In it is most basic operation, nslookup tool allows the host running the tool to query any
specified DNS server for a DNS record. The queried DNS server can be a root DNS
server, a top-level-domain DNS server, an authoritative DNS server, or an intermediate
DNS server (see the textbook for definitions of these terms). To accomplish this task,
nslookup sends a DNS query to the specified DNS server, receives a DNS reply from that
same DNS server, and displays the result.

1 References to figures and sections are for the 6th edition of our text, Computer Networks, A Top-down
Approach, 6th ed., J.F. Kurose and K.W. Ross, Addison-Wesley/Pearson, 2012.

The above screenshot shows the results of three independent nslookup commands
(displayed in the Windows Command Prompt). In this example, the client host is located
on the campus of Polytechnic University in Brooklyn, where the default local DNS server
is dns-prime.poly.edu. When running nslookup, if no DNS server is specified, then
nslookup sends the query to the default DNS server, which in this case is dns-
prime.poly.edu. Consider the first command:

nslookup www.mit.edu

In words, this command is saying “please send me the IP address for the host
www.mit.edu”. As shown in the screenshot, the response from this command provides
two pieces of information: (1) the name and IP address of the DNS server that provides
the answer; and (2) the answer itself, which is the host name and IP address of
www.mit.edu. Although the response came from the local DNS server at Polytechnic
University, it is quite possible that this local DNS server iteratively contacted several
other DNS servers to get the answer, as described in Section 2.5 of the textbook.

Now consider the second command:

nslookup –type=NS mit.edu

In this example, we have provided the option “-type=NS” and the domain “mit.edu”. This
causes nslookup to send a query for a type-NS record to the default local DNS server. In

words, the query is saying, “please send me the host names of the authoritative DNS for
mit.edu”. (When the –type option is not used, nslookup uses the default, which is to query
for type A records.) The answer, displayed in the above screenshot, first indicates the
DNS server that is providing the answer (which is the default local DNS server) along
with three MIT nameservers. Each of these servers is indeed an authoritative DNS server
for the hosts on the MIT campus. However, nslookup also indicates that the answer is
“non-authoritative,” meaning that this answer came from the cache of some server rather
than from an authoritative MIT DNS server. Finally, the answer also includes the IP
addresses of the authoritative DNS servers at MIT. (Even though the type-NS query
generated by nslookup did not explicitly ask for the IP addresses, the local DNS server
returned these “for free” and nslookup displays the result.)

Now finally consider the third command:

nslookup www.aiit.or.kr bitsy.mit.edu

In this example, we indicate that we want to the query sent to the DNS server
bitsy.mit.edu rather than to the default DNS server (dns-prime.poly.edu). Thus, the query
and reply transaction takes place directly between our querying host and bitsy.mit.edu. In
this example, the DNS server bitsy.mit.edu provides the IP address of the host
www.aiit.or.kr, which is a web server at the Advanced Institute of Information
Technology (in Korea).

Now that we have gone through a few illustrative examples, you are perhaps wondering
about the general syntax of nslookup commands. The syntax is:

nslookup –option1 –option2 host-to-find dns-server

In general, nslookup can be run with zero, one, two or more options. And as we have seen
in the above examples, the dns-server is optional as well; if it is not supplied, the query is
sent to the default local DNS server.

Now that we have provided an overview of nslookup, it is time for you to test drive it
yourself. Do the following (and write down the results):

1. Run nslookup to obtain the IP address of a Web server in Asia. What is the IP
address of that server?

2. Run nslookup to determine the authoritative DNS servers for a university in
Europe.

3. Run nslookup so that one of the DNS servers obtained in Question 2 is queried for
the mail servers for Yahoo! mail. What is its IP address?

2. ipconfig

ipconfig (for Windows) and ifconfig (for Linux/Unix) are among the most useful little
utilities in your host, especially for debugging network issues. Here we’ll only describe

ipconfig, although the Linux/Unix ifconfig is very similar. ipconfig can be used to show
your current TCP/IP information, including your address, DNS server addresses, adapter
type and so on. For example, if you all this information about your host simply by
entering

ipconfig \all

into the Command Prompt, as shown in the following screenshot.

ipconfig is also very useful for managing the DNS information stored in your host. In
Section 2.5 we learned that a host can cache DNS records it recently obtained. To see
these cached records, after the prompt C:\> provide the following command:

ipconfig /displaydns

Each entry shows the remaining Time to Live (TTL) in seconds. To clear the cache, enter

ipconfig /flushdns

Flushing the DNS cache clears all entries and reloads the entries from the hosts file.

3. Tracing DNS with Wireshark

Now that we are familiar with nslookup and ipconfig, we’re ready to get down to some
serious business. Let’s first capture the DNS packets that are generated by ordinary Web-
surfing activity.

• Use ipconfig to empty the DNS cache in your host.
• Open your browser and empty your browser cache. (With Internet Explorer,

go to Tools menu and select Internet Options; then in the General tab select
Delete Files.)

• Open Wireshark and enter “ip.addr == your_IP_address” into the filter, where
you obtain your_IP_address with ipconfig. This filter removes all packets that
neither originate nor are destined to your host.

• Start packet capture in Wireshark.
• With your browser, visit the Web page: http://www.ietf.org
• Stop packet capture.

If you are unable to run Wireshark on a live network connection, you can download a
packet trace file that was captured while following the steps above on one of the author’s
computers2. Answer the following questions. Whenever possible, when answering a
question below, you should hand in a printout of the packet(s) within the trace that you
used to answer the question asked. Annotate the printout3 to explain your answer. To
print a packet, use File->Print, choose Selected packet only, choose Packet summary
line, and select the minimum amount of packet detail that you need to answer the
question.

4. Locate the DNS query and response messages. Are then sent over UDP or TCP?
5. What is the destination port for the DNS query message? What is the source port

of DNS response message?
6. To what IP address is the DNS query message sent? Use ipconfig to determine the

IP address of your local DNS server. Are these two IP addresses the same?
7. Examine the DNS query message. What “Type” of DNS query is it? Does the

query message contain any “answers”?
8. Examine the DNS response message. How many “answers” are provided? What

do each of these answers contain?

2 Download the zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zipand extract the file dns-
ethereal-trace-1. The traces in this zip file were collected by Wireshark running on one of the author’s
computers, while performing the steps indicated in the Wireshark lab. Once you have downloaded the
trace, you can load it into Wireshark and view the trace using the File pull down menu, choosing Open, and
then selecting the dns-ethereal-trace-1 trace file.
3 What do we mean by “annotate”? If you hand in a paper copy, please highlight where in the printout
you’ve found the answer and add some text (preferably with a colored pen) noting what you found in what
you ‘ve highlight. If you hand in an electronic copy, it would be great if you could also highlight and
annotate.

9. Consider the subsequent TCP SYN packet sent by your host. Does the destination
IP address of the SYN packet correspond to any of the IP addresses provided in
the DNS response message?

10. This web page contains images. Before retrieving each image, does your host
issue new DNS queries?

Now let’s play with nslookup4.

• Start packet capture.
• Do an nslookup on www.mit.edu
• Stop packet capture.

You should get a trace that looks something like the following:�

We see from the above screenshot that nslookup actually sent three DNS queries and
received three DNS responses. For the purpose of this assignment, in answering the
following questions, ignore the first two sets of queries/responses, as they are specific to
nslookup and are not normally generated by standard Internet applications. You should
instead focus on the last query and response messages.

4 If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-2 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

11. What is the destination port for the DNS query message? What is the source port
of DNS response message?

12. To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server?

13. Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”?

14. Examine the DNS response message. How many “answers” are provided? What
do each of these answers contain?

15. Provide a screenshot.

Now repeat the previous experiment, but instead issue the command:

nslookup –type=NS mit.edu

Answer the following questions5 :

16. To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server?

17. Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”?

18. Examine the DNS response message. What MIT nameservers does the response
message provide? Does this response message also provide the IP addresses of the
MIT namesers?

19. Provide a screenshot.

Now repeat the previous experiment, but instead issue the command:

nslookup www.aiit.or.kr bitsy.mit.edu

Answer the following questions6:

20. To what IP address is the DNS query message sent? Is this the IP address of your
default local DNS server? If not, what does the IP address correspond to?

21. Examine the DNS query message. What “Type” of DNS query is it? Does the
query message contain any “answers”?

22. Examine the DNS response message. How many “answers” are provided? What
does each of these answers contain?

23. Provide a screenshot.

5 If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-3 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip
6 If you are unable to run Wireshark and capture a trace file, use the trace file dns-ethereal-trace-4 in the
zip file http://gaia.cs.umass.edu/wireshark-labs/wireshark-traces.zip

