CSE 3214: Computer Network
Protocols and Applications

—Socket Programming

Dr. Peter Lian, Professor
Department of Computer Science and Engineering
York University
Email: peterlian@cse.yorku.ca
Office: 1012C Lassonde Building
Course website: http://wiki.cse.yorku.ca/
course_archive/2012-13/W/3214

Introduction 1-1

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-
transport protocol

api lication

application

socket \

[~

controlled by
app developer

ntroIIed

Internet

A
\4

Application Layer 2-2

Socket programming using Python

* Python is a general purpose, high level
programming language

* Clear and expressive syntax

* Large and comprehensive library

* Used as scripting language as well as in a
wide range of non-scripting contexts

e Available to Windows, Mac, Linux/Unix

* Official Website: http://www.python.org

Socket programming using Python

Download Python

) About \V/ Python (program: \V Wireshark - Wikip (D Python Programn ™ The5 Best Website » / @ Python Programm () Dive Into Pyth
€ 2 C O www.pythonorg
*§ Google

@ python

Python Programming Language — Official Website

Python is a programming language that lets you work more quickly and integrate your systems more
effectively. You can learn to use Python and see almost immediate gains in productivity and lower

DOWNLOAD maintenance costs.

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and NET virtual machines.

COMMUNITY
EOUNDATION Python is free to use, even for commercial products, because of its OSI|-approved open source license.
CORE DEVELOPMENT New to Python or choosing between Python 2 and Python 3? Read Python 2 or Python 3.

Help

The Python Software Foundation holds the intellectual property rights behind Python, underwrites the PyCon

Package Index . . ,
conference, and funds other projects in the Python community.

Quick Links (2.7.3)
» Documentation

, Read more, -or- download Python now
» Windows Installer

Socket programming using Python

o) S

| 74 *Python Shell*

File Edit Shell Debug Options Windows Help
Python 2.7.3 (default, Apr 10 2012, 23:31:26) [MSC wv.1500 32 bit (Intel)] on winj

32

Type "copyright", "credits" or "license ()" for more information.
>>> print "hello world"

hello world

>>>

_=

Ln:5/Col: 4

Application Layer

Socket programming using Python

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-
transport protocol

Application Layer

2-6

Socket programming

Iwo socket types for two transport services:
— UDP: unreliable datagram
— TCP: reliable, byte stream-oriented

Application Example:

. Client reads a line of characters (data) from its
keyboard and sends the data to the server.

2. The server receives the data and converts

characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays

the line on its screen.

Application Layer 2-7

Socket programming with UDP

UDP: no “connection’” between client & server
* no handshaking before sending data

* sender explicitly attaches IP destination address and
port # to each packet

* rcvr extracts sender |IP address ard port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
* UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer

2-8

Client/server socket interaction: UDP

server (running on serverIP) client

create socket:
create socket, port= x: clientSocket =

serverSocket = socket(AF_INET,SOCK_DGRAM)
socket(AF _INET,SOCK_DGRAM)

Create datagram with server IP and

l Qm// port=x; send datagram via
read datagram fr clientSocket

serverSocket

write reply to —

serverSocket — read datagram from
specifying clientSocket

client address,

port number close

clientSocket

Application 2-9

ExamEIe app: UDP client

Python UDPClient
include Python’s socket

library » from socket import *
serverName = ‘hostname’
serverPort = 12000
create UDP socket forserver__, cljentSocket = socket(AF _INET, SOCK_DGRAM)
get user keyboard message = raw_input(’Input lowercase
nput > sentence’)

Attach server name, port to clientSocket.sendto(message,(serverName,

message; send into socket——

serverPort))
read reply characters from — ModifiedMessage, serverAddress =

socket into string clientSocket.recvfrom(2048)
print out received string and—» print modified Message

close socket C“entSOCkEt.Close()

Application Layer 2-10

Example app: UDP server

create UDP socket

»
>

bind socket to local port
number 12000

»
>

loop forever

Read from UDP socket into

Python UDPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind((", serverPort))

print “The server is ready to receive”

while 1:
message, clientAddress = serverSocket.recvfrom(2048)
print message

» modifiedMessage = message.upper()

message, getting client’s
address (client IP and port)

send upper case string back
to this client

serverSocket.sendto(modifiedMessage, clientAddress)

Application Layer

2-11

Socket programming with TCP

client must contact server
server process must first be TCP creates new socket for server

running
server must have created

* when contacted by client, server

process to communicate with
that particular client

socket (door) that welcomes — allows server to talk with

client’ s contact

client contacts server by:

Creating TCP socket,
specifying IP address, port
number of server process

when client creates socket;
client TCP establishes
connection to server TCP

multiple clients

— source port numbers used to

distinguish clients (more in
Chap 3)

application viewpoint:

TCP provides reliable, in-order
byte-stream transfer (pipe)
between client and server

Application Layer 2-12

Client/server socket interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

1

wait for incoming TCP create socket,
connection request = == == == == == == ==p connecttohostid, port=x
connectionSocket = connection setup

clientSocket = socket()
serverSocket.accept()

— 1 send request using
read request from / clientSocket
connectionSocket

write reply to —_— |

connectionSocket — read reply from
1 clientSocket

close

connectionSocket close v

clientSocket

Application Layer 2-13

Example app: TCP client

Python TCPClient

from socket import *

serverName = 'servername’

serverPort = 12000
create TCP socket for server, clientSocket = socket(AF _INET, SOCK_STREAM)
remote port 12000 —+clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
::n:]ee,er(jotr: attachserver . clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Application Layer 2-14

Example app: TCP server

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

A

Python TCPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((”,serverPort))

— serverSocket.listen(1)

print ‘The server is ready to receive’
while 1:

—— connectionSocket, addr = serverSocket.accept()

read bytes from socket (but
not address as in UDP)

close connection to this client

»sentence = connectionSocket.recv(1024)
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence)

(but not welcoming socket) ., connectionSocket.close()

Application Layer 2-15

