
Solutions to Chapter 3 Problems

Q1. True or false

a) The size of the TCP rwnd never changes throughout the duration of the
connection.

b) Suppose Host A is sending Host B a large file over a TCP connection. The
number of unacknowledged bytes that A sends cannot exceed the size of the
receiver buffer.

c) Suppose Host A is sending Host B a large file to Host B over a TCP connection.
If the sequence number for a segment of this connection is m, then the sequence
number for the subsequent segment will necessarily be m+1.

d) Consider congestion control in TCP. When the timer expires at the sender, the
value of ssthresh is set to one half of its previous value.

(This question is taken from Kurose & Ross’s book, Chapter 3 Review Problems
14(b,c,d), and 18

Solution:

a) F
b) T
c) F
d) F

Q2.

UDP and TCP use 1s complement for their checksum. Suppose you have the
following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s
complement of the sum of these 8-bit bytes? (Note that although UDP and TCP use
16-bit words in computing the checksum, for this problem you are being asked to
consider 8-bit sum.) Show all work. Why is it that UDP takes the 1s complement of
the sum: that is, why not just use the sum? With the 1s complement scheme, how
does the receiver detect errors? Is it possible that a 1-bit error will go undetected?
How about a 2-bit error?

(This question is taken from Kurose & Ross’s book, Chapter 3, Problem 3)

Solution:

Note,	
 wrap	
 around	
 if	
 overflow.	

	

	

	

	

One's complement = 1 1 0 1 0 0 0 1.

To detect errors, the receiver adds the four words (the three original words and the
checksum). If the sum contains a zero, the receiver knows there has been an error. All
one-bit errors will be detected, but two-bit errors can be undetected (e.g., if the last digit
of the first word is converted to a 0 and the last digit of the second word is converted to a
1).

Q3.
Consider the rdt2.2 receiver in Fig. P3 and the creation of a new packet in the self-
transition (i.e. the transition from the state back to itself) in the Wait-for-0-from below
and the Wait-for-1-from-below states: sndpkt=make_pkt(ACK, 0, chksum) and
sndpkt=make_pkt(ACK, 1, chksum). Would the protocol work correctly if this action
were removed from the self-transition in the Wait-for-1-from-below state? Justify your
answer. What if this event were removed from the self-transition in the Wait-for-0-from-
below state? (hint: In this later case, consider what would happen if the first sender-to-
receiver packet were corrupted)

Fig. P3

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 11)

Solution:
If	
 the	
 sending	
 of	
 this	
 message	
 were	
 removed,	
 the	
 sending	
 and	
 receiving	
 sides	
 would	

deadlock,	
 waiting	
 for	
 an	
 event	
 that	
 would	
 never	
 occur.	
 	
 Here’s	
 a	
 scenario:	

	

• Sender	
 sends	
 pkt0,	
 enter	
 the	
 “Wait	
 for	
 ACK0	
 state”,	
 and	
 waits	
 for	
 a	
 packet	

back	
 from	
 the	
 receiver	

• Receiver	
 is	
 in	
 the	
 “Wait	
 for	
 0	
 from	
 below”	
 state,	
 and	
 receives	
 a	
 corrupted	

packet	
 from	
 the	
 sender.	
 	
 Suppose	
 it	
 does	
 not	
 send	
 anything	
 back,	
 and	
 simply	

re-­‐enters	
 the	
 ‘wait	
 for	
 0	
 from	
 below”	
 state.	

	
 	
 	

Now,	
 the	
 ender	
 is	
 awaiting	
 an	
 ACK	
 of	
 some	
 sort	
 from	
 the	
 receiver,	
 and	
 the	
 receiver	

is	
 waiting	
 for	
 a	
 data	
 packet	
 form	
 the	
 sender	
 –	
 a	
 deadlock!	

Q4.
Suppose the five measured SampleRTT values are 106ms, 120ms, 140ms, 90ms, and
115ms. Compute the EstimatedRTT after each of these SampleRTT values is obtained,
using a value of α=0.125 and assuming that the value of EstimatedRTT was 100ms just
before the first of these five samples were obtained. Compute also the DevRTT after each
sample is obtained, assuming a value of β=0.25 and assuming the value of DevRTT was
5 ms just before the first of these five samples was obtained. Last compute the TCP
TimeoutInterval after each of these samples is obtained.

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 31)

Solution:

	

	

	

	

After	
 obtaining	
 first	
 sampleRTT	
 is	
 	
 	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

After	
 obtaining	
 second	
 sampleRTT	
 =	
 120ms:	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

After	
 obtaining	
 Third	
 sampleRTT	
 =	
 140ms:	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

After	
 obtaining	
 fourth	
 sampleRTT	
 =	
 90ms:	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

After	
 obtaining	
 fifth	
 sampleRTT	
 =	
 115ms:	

	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .	

Q5.
Consider Fig. P5. Assuming TCP Reno is the protocol experiencing the behavior shown
in the figure, answer the following questions.

a) Identify the interval of time when TCP slow start is operating.
b) Identify the interval of time when TCP congestion avoidance is operation.
c) After the 16th transmission round, is segment loss detected by a triple duplicate

ACK or by a timeout?
d) After the 22nd transmission round, is segment loss detected by a triple duplicate

ACK or by a timeout?
e) What is the initial value of ssthresh at the first transmission round?
f) What is the value of ssthresh at the 18th transmission round?
g) What is the value of ssthresh at the 24th transmission round?
h) During what transmission round is the 70th segment sent?
i) Assuming a packet loss is detected after the 26th round by the receipt of a triple

duplicate ACK, what will be the value of the congestion window size and of
ssthresh?

j) Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple
duplicate ACKs are received at the 16th round. What are the ssthresh and the
congestion window size at the 19th round?

k) Again suppose TCP Tahoe is used, and there is a timeout event at 22nd round.
How many packets have been sent out from 17th round till 22nd round, inclusive?

Fig. P5

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 40)

Solution:

a) TCP	
 slowstart	
 is	
 operating	
 in	
 the	
 intervals	
 [1,6]	
 and	
 [23,26]	

b) TCP	
 congestion	
 avoidance	
 is	
 operating	
 in	
 the	
 intervals	
 [6,16]	
 and	
 [17,22]	

c) After	
 the	
 16th	
 transmission	
 round,	
 packet	
 loss	
 is	
 recognized	
 by	
 a	
 triple	
 duplicate	

ACK.	
 	
 If	
 there	
 was	
 a	
 timeout,	
 the	
 congestion	
 window	
 size	
 would	
 have	
 dropped	
 to	

1.	

d) After	
 the	
 22nd	
 transmission	
 round,	
 segment	
 loss	
 is	
 detected	
 due	
 to	
 timeout,	
 and	

hence	
 the	
 congestion	
 window	
 size	
 is	
 set	
 to	
 1.	

e) The	
 threshold	
 is	
 initially	
 32,	
 since	
 it	
 is	
 at	
 this	
 window	
 size	
 that	
 slow	
 start	
 stops	

and	
 congestion	
 avoidance	
 begins.	

f) The	
 threshold	
 is	
 set	
 to	
 half	
 the	
 value	
 of	
 the	
 congestion	
 window	
 when	
 packet	
 loss	

is	
 detected.	
 When	
 loss	
 is	
 detected	
 during	
 transmission	
 round	
 16,	
 the	
 congestion	

windows	
 size	
 is	
 42.	
 Hence	
 the	
 threshold	
 is	
 21	
 during	
 the	
 18th	
 transmission	

round.	

g) The	
 threshold	
 is	
 set	
 to	
 half	
 the	
 value	
 of	
 the	
 congestion	
 window	
 when	
 packet	
 loss	

is	
 detected.	
 When	
 loss	
 is	
 detected	
 during	
 transmission	
 round	
 22,	
 the	
 congestion	

windows	
 size	
 is	
 29.	
 Hence	
 the	
 threshold	
 is	
 14	
 (taking	
 lower	
 floor	
 of	
 14.5)	
 during	

the	
 24th	
 transmission	
 round.	

h) During	
 the	
 1st	
 transmission	
 round,	
 packet	
 1	
 is	
 sent;	
 packet	
 2-­‐3	
 are	
 sent	
 in	
 the	
 2nd	

transmission	
 round;	
 packets	
 4-­‐7	
 are	
 sent	
 in	
 the	
 3rd	
 transmission	
 round;	
 packets	

8-­‐15	
 are	
 sent	
 in	
 the	
 4th	
 transmission	
 round;	
 packets	
 16-­‐31	
 are	
 sent	
 in	
 the	
 5th	

transmission	
 round;	
 packets	
 32-­‐63	
 are	
 sent	
 in	
 the	
 6th	
 transmission	
 round;	

packets	
 64	
 –	
 96	
 are	
 sent	
 in	
 the	
 7th	
 transmission	
 round.	
 	
 Thus	
 packet	
 70	
 is	
 sent	
 in	

the	
 7th	
 transmission	
 round.	

i) The	
 threshold	
 will	
 be	
 set	
 to	
 half	
 the	
 current	
 value	
 of	
 the	
 congestion	
 window	
 (8)	
 	

when	
 the	
 loss	
 occurred	
 and	
 congestion	
 window	
 will	
 be	
 set	
 to	
 the	
 new	
 threshold	

value	
 +	
 3	
 MSS	
 .	
 Thus	
 the	
 new	
 values	
 of	
 the	
 threshold	
 and	
 window	
 will	
 be	
 4	
 and	
 7	

respectively.	
 	

j) threshold	
 is	
 21,	
 and	
 congestion	
 window	
 size	
 is	
 1.	
 	

k) round	
 17,	
 1	
 packet;	
 round	
 18,	
 2	
 packets;	
 round	
 19,	
 4	
 packets;	
 round	
 20,	
 8	

packets;	
 round	
 21,	
 16	
 packets;	
 round	
 22,	
 21	
 packets.	
 So,	
 the	
 total	
 number	
 is	
 52.	
 	

