
Solutions to Chapter 3 Problems

Q1. True or false

a) The size of the TCP rwnd never changes throughout the duration of the
connection.

b) Suppose Host A is sending Host B a large file over a TCP connection. The
number of unacknowledged bytes that A sends cannot exceed the size of the
receiver buffer.

c) Suppose Host A is sending Host B a large file to Host B over a TCP connection.
If the sequence number for a segment of this connection is m, then the sequence
number for the subsequent segment will necessarily be m+1.

d) Consider congestion control in TCP. When the timer expires at the sender, the
value of ssthresh is set to one half of its previous value.

(This question is taken from Kurose & Ross’s book, Chapter 3 Review Problems
14(b,c,d), and 18

Solution:

a) F
b) T
c) F
d) F

Q2.

UDP and TCP use 1s complement for their checksum. Suppose you have the
following three 8-bit bytes: 01010011, 01100110, 01110100. What is the 1s
complement of the sum of these 8-bit bytes? (Note that although UDP and TCP use
16-bit words in computing the checksum, for this problem you are being asked to
consider 8-bit sum.) Show all work. Why is it that UDP takes the 1s complement of
the sum: that is, why not just use the sum? With the 1s complement scheme, how
does the receiver detect errors? Is it possible that a 1-bit error will go undetected?
How about a 2-bit error?

(This question is taken from Kurose & Ross’s book, Chapter 3, Problem 3)

Solution:

Note,	 wrap	 around	 if	 overflow.	
	

	
	

	

One's complement = 1 1 0 1 0 0 0 1.

To detect errors, the receiver adds the four words (the three original words and the
checksum). If the sum contains a zero, the receiver knows there has been an error. All
one-bit errors will be detected, but two-bit errors can be undetected (e.g., if the last digit
of the first word is converted to a 0 and the last digit of the second word is converted to a
1).

Q3.
Consider the rdt2.2 receiver in Fig. P3 and the creation of a new packet in the self-
transition (i.e. the transition from the state back to itself) in the Wait-for-0-from below
and the Wait-for-1-from-below states: sndpkt=make_pkt(ACK, 0, chksum) and
sndpkt=make_pkt(ACK, 1, chksum). Would the protocol work correctly if this action
were removed from the self-transition in the Wait-for-1-from-below state? Justify your
answer. What if this event were removed from the self-transition in the Wait-for-0-from-
below state? (hint: In this later case, consider what would happen if the first sender-to-
receiver packet were corrupted)

Fig. P3

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 11)

Solution:
If	 the	 sending	 of	 this	 message	 were	 removed,	 the	 sending	 and	 receiving	 sides	 would	
deadlock,	 waiting	 for	 an	 event	 that	 would	 never	 occur.	 	 Here’s	 a	 scenario:	
	

• Sender	 sends	 pkt0,	 enter	 the	 “Wait	 for	 ACK0	 state”,	 and	 waits	 for	 a	 packet	
back	 from	 the	 receiver	

• Receiver	 is	 in	 the	 “Wait	 for	 0	 from	 below”	 state,	 and	 receives	 a	 corrupted	
packet	 from	 the	 sender.	 	 Suppose	 it	 does	 not	 send	 anything	 back,	 and	 simply	
re-‐enters	 the	 ‘wait	 for	 0	 from	 below”	 state.	
	 	 	

Now,	 the	 ender	 is	 awaiting	 an	 ACK	 of	 some	 sort	 from	 the	 receiver,	 and	 the	 receiver	
is	 waiting	 for	 a	 data	 packet	 form	 the	 sender	 –	 a	 deadlock!	

Q4.
Suppose the five measured SampleRTT values are 106ms, 120ms, 140ms, 90ms, and
115ms. Compute the EstimatedRTT after each of these SampleRTT values is obtained,
using a value of α=0.125 and assuming that the value of EstimatedRTT was 100ms just
before the first of these five samples were obtained. Compute also the DevRTT after each
sample is obtained, assuming a value of β=0.25 and assuming the value of DevRTT was
5 ms just before the first of these five samples was obtained. Last compute the TCP
TimeoutInterval after each of these samples is obtained.

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 31)

Solution:

	

	

	
	
After	 obtaining	 first	 sampleRTT	 is	 	 	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	
After	 obtaining	 second	 sampleRTT	 =	 120ms:	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	
After	 obtaining	 Third	 sampleRTT	 =	 140ms:	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	
After	 obtaining	 fourth	 sampleRTT	 =	 90ms:	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	
After	 obtaining	 fifth	 sampleRTT	 =	 115ms:	

	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .	

Q5.
Consider Fig. P5. Assuming TCP Reno is the protocol experiencing the behavior shown
in the figure, answer the following questions.

a) Identify the interval of time when TCP slow start is operating.
b) Identify the interval of time when TCP congestion avoidance is operation.
c) After the 16th transmission round, is segment loss detected by a triple duplicate

ACK or by a timeout?
d) After the 22nd transmission round, is segment loss detected by a triple duplicate

ACK or by a timeout?
e) What is the initial value of ssthresh at the first transmission round?
f) What is the value of ssthresh at the 18th transmission round?
g) What is the value of ssthresh at the 24th transmission round?
h) During what transmission round is the 70th segment sent?
i) Assuming a packet loss is detected after the 26th round by the receipt of a triple

duplicate ACK, what will be the value of the congestion window size and of
ssthresh?

j) Suppose TCP Tahoe is used (instead of TCP Reno), and assume that triple
duplicate ACKs are received at the 16th round. What are the ssthresh and the
congestion window size at the 19th round?

k) Again suppose TCP Tahoe is used, and there is a timeout event at 22nd round.
How many packets have been sent out from 17th round till 22nd round, inclusive?

Fig. P5

(This question is taken from Kurose & Ross’s book, Chapter 3 Problem 40)

Solution:

a) TCP	 slowstart	 is	 operating	 in	 the	 intervals	 [1,6]	 and	 [23,26]	
b) TCP	 congestion	 avoidance	 is	 operating	 in	 the	 intervals	 [6,16]	 and	 [17,22]	
c) After	 the	 16th	 transmission	 round,	 packet	 loss	 is	 recognized	 by	 a	 triple	 duplicate	

ACK.	 	 If	 there	 was	 a	 timeout,	 the	 congestion	 window	 size	 would	 have	 dropped	 to	
1.	

d) After	 the	 22nd	 transmission	 round,	 segment	 loss	 is	 detected	 due	 to	 timeout,	 and	
hence	 the	 congestion	 window	 size	 is	 set	 to	 1.	

e) The	 threshold	 is	 initially	 32,	 since	 it	 is	 at	 this	 window	 size	 that	 slow	 start	 stops	
and	 congestion	 avoidance	 begins.	

f) The	 threshold	 is	 set	 to	 half	 the	 value	 of	 the	 congestion	 window	 when	 packet	 loss	
is	 detected.	 When	 loss	 is	 detected	 during	 transmission	 round	 16,	 the	 congestion	
windows	 size	 is	 42.	 Hence	 the	 threshold	 is	 21	 during	 the	 18th	 transmission	
round.	

g) The	 threshold	 is	 set	 to	 half	 the	 value	 of	 the	 congestion	 window	 when	 packet	 loss	
is	 detected.	 When	 loss	 is	 detected	 during	 transmission	 round	 22,	 the	 congestion	
windows	 size	 is	 29.	 Hence	 the	 threshold	 is	 14	 (taking	 lower	 floor	 of	 14.5)	 during	
the	 24th	 transmission	 round.	

h) During	 the	 1st	 transmission	 round,	 packet	 1	 is	 sent;	 packet	 2-‐3	 are	 sent	 in	 the	 2nd	
transmission	 round;	 packets	 4-‐7	 are	 sent	 in	 the	 3rd	 transmission	 round;	 packets	
8-‐15	 are	 sent	 in	 the	 4th	 transmission	 round;	 packets	 16-‐31	 are	 sent	 in	 the	 5th	
transmission	 round;	 packets	 32-‐63	 are	 sent	 in	 the	 6th	 transmission	 round;	
packets	 64	 –	 96	 are	 sent	 in	 the	 7th	 transmission	 round.	 	 Thus	 packet	 70	 is	 sent	 in	
the	 7th	 transmission	 round.	

i) The	 threshold	 will	 be	 set	 to	 half	 the	 current	 value	 of	 the	 congestion	 window	 (8)	 	
when	 the	 loss	 occurred	 and	 congestion	 window	 will	 be	 set	 to	 the	 new	 threshold	
value	 +	 3	 MSS	 .	 Thus	 the	 new	 values	 of	 the	 threshold	 and	 window	 will	 be	 4	 and	 7	
respectively.	 	

j) threshold	 is	 21,	 and	 congestion	 window	 size	 is	 1.	 	

k) round	 17,	 1	 packet;	 round	 18,	 2	 packets;	 round	 19,	 4	 packets;	 round	 20,	 8	
packets;	 round	 21,	 16	 packets;	 round	 22,	 21	 packets.	 So,	 the	 total	 number	 is	 52.	 	

