CSE 3221
Operating System Fundamentals

No.4
CPU scheduling

Prof. Hui Jiang
Dept of Computer Sci and Engil ing
York University

CPU Scheduling

- CPU scheduling is the basis of multiprogramming
- CPU scheduling consists of two components:

— CPU scheduler: when CPU becomes idle, the CPU scheduler
must select from among the processes in ready queue.

— Dispatcher: the module which gives control of CPU to the
process selected by the CPU scheduler.

« Switching context
« Switching to user mode
« Jumping to the proper location in user program to restart

— Dispatch latency: the time it takes for the dispatcher to stop one
process and start another running

« Dispatcher should be as fast as possible

CPU burst vs. I/0 burst

N

- Process (thread) execution
load store

= CPU burst + I/O burst add store > CPU bursf
read from file

<

- Process (thread) alternates R + 1/0 burst
between these two states. b,
store increment
index » CPU burs
. write to file J
- Length of these bursts is
very different. wait for /0 + 1/0 burst

<
load store

add store + CPU burs
read from file

<
wait for /O » /0 burst

Histogram of CPU-burst Times

frequency

T I T I
16 24 32 40

burst duration (milliseconds)

Non-preemptive vs. Preemptive
scheduling

- CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.
- Non-preemptive scheduling takes place under 1 and 4.

— Once the CPU has been allocated to a process, the process
keeps the CPU until it releases CPU.

- Preemptive scheduling takes place in 1,2,3,4.
— A running process can be preempted by another process
— Not easy to make OS kernel to support preemptive scheduling

— How about if the preempted process is updating some critical
data structure?
« Process synchronization
« Disable interrupt

Scheduling Criteria

- CPU utilization — keep the CPU as busy as possible.
— Usage percentage (40% -- 90%)
- Throughput — # of processes that complete their execution per
time unit.
- Turnaround time — amount of time to execute a particular
process.
— The interval from the time of submission a process to the
time of completion.
- Waiting time — amount of time a process has been waiting in the
ready queue.
Response time — amount of time it takes from when a request
was submitted until the first response is produced, not the final
output (for time-sharing environment).

Scheduling Algorithms

- First-come, first-served (FCFS) scheduling
- Shortest-Job-First (SJF) Scheduling

- Priority Scheduling

- Round-Robin (RR) scheduling

- Multi-level Queue Scheduling

- Multilevel Feedback Queue Scheduling

First-Come, First-Served (FCFS)

Scheduling
Process Burst Time

P, 24

P, 3

P, 3
Supp that the pr arrive at time 0 in the order: P,, P,, P,
The Gantt Chart for the scheduling is:

P, P, Py

0 24 27 30

Waiting time for P, =0; P, =24; P,=27.
Average waiting time: (0 + 24 + 27)/3 =17.

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P,,P;,P,.
The Gantt chart for the schedule is:

P, Py Py

0 3 6 30
Waiting time for P;=6;P,=0.P;=3.
Average waiting time: (6 + 0+ 3)/3=3.
FCFS is easy to implement (as a FIFO sequence).
FCFS results in long wait in most cases and suffers convoy effect.

— Convoy effect : all the other processes wait for one big process
to get off the CPU.

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst.
Schedule CPU to process with the shortest time.
— The shortest one is the first.
Implementation: ready queue - sorted list.
- Two schemes:

— nonpreemptive — once CPU given to the process it cannot be
pr pted until it compl its CPU burst.

— preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process, it
preempts. This scheme is know as the Shortest-Remaining-
Time-First (SRTF).

- 8JF is optimal — gives minimum average waiting time for a given
set of processes.

Example of Non-Preemptive SJF

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (non-preemptive)

P, P, P, P,

Average waiting time=(0+6+3 +7)/4=4

Example of Preemptive SJF
(shortest-remaining-time-first)

Process _ Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4

SJF (preemptive)

Py | Py |Ps | Py P, P,

0 2 4 5 7 1

Average waiting time = (9 +1 + 0 +2)/4 =3

Determining Length
of Next CPU Burst

- Length of next CPU burst is unknown.
- Can only estimate the length.

- Can be done by using the length of previous CPU
bursts, using exponential averaging, to predict
the next one.

1. ¢, =actual lenght of n"CPU burst

2. 1,,, =predicted value for the next CPU burst
3. 0,05 <1

4. Define: T,,=at,+(1-a),.

Examples of Exponential Averaging

- a=0
~ T TTH= .. =T
— Recent history does not count.
a=1
- T =t

— Only the actual last CPU burst counts.
- If we expand the formula, we get:
To = at #(1-a)tn1+ ..
+(1-a)i tnj+ ...
+(1-a)"t
- Since both a and (1 - a) are less than or equal to 1, each
successive term has less weight than its predecessor.

Prediction of the Length of the
Next CPU Burst

12
10
gl
t 6
s
Pys
| I i I | |
time ——»
CPU burst (f) 6 4 6 4 13 13 13
'guess'(r) 10 8 6 6 5 9 11 12

Priority Scheduling

- A priority number (integer) is associated with each process

- The CPU is allocated to the process with the highest priority
(smallest integer =» highest priority).

— Preemptive
— Nonpreemptive
- 8JF is a priority scheduling where priority is the predicted
next CPU burst time.

- Problem = Starvation — low priority processes may never
execute.

- Solution & Aging — as time progresses increase the priority
of the process.

Round Robin (RR)

- Each process gets a small slice of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.

— Ready queue is a circular queue or FIFO queue.

- Fairness: If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

- Performance:
— qlarge & FCFS
— g small & too many context switches, so overhead is high.
— g must be large with respect to most CPU bursts’ lengths.

Time Quantum and Context
Switch Time

process time = 10 quantum context
switches
‘ 12 0

5 —
o

5
o

Example of RR with Time
Quantum = 20

Process Burst Time
P, 53
P, 17
P, 68
P, 24

The Gantt chart is:

o]

Py | Py Py ‘ Ps

P, ‘ Py
0 20 37 57 77 97 117 121 134 154 162

P, Ps

Typically, higher average waiting time than SJF, but
better response.

Turnaround Time Varies With The
Time Quantum

process | time
125 P, 5
120 32 g
Py 1
2 115 P, 7
z
S 1.0
e
2 105}
2
2 100 F
<4
2
z 95
2.0k
lsslesn e s eae]
1 2 3 4 5 6 7
time quantum

Multilevel Queue

Ready queue is partitioned into separate queues:
— foreground (interactive)
— background (batch)
- Any process is permanently assigned to one of these queues
Each queue has its own scheduling algorithm, i.e.,
— foreground - RR
— background — FCFS
- Scheduling must be done between the queues.

— Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

— Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e.,

« 80% to foreground in RR
« 20% to background in FCFS

One example of
multilevel Queue Scheduling

ighest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

IRy
LT

lowest priority

Multilevel Feedback Queue
- A process can move between the various queues; aging can be
implemented this way.
— If used too much CPU time > lower-priority queue
— If waited too long => higher-priority queue

Multilevel-feedback-queue scheduler defined by the following
parameters:

— number of queues

— scheduling algorithms for each queue

— method to determine when to upgrade a process
— method to determine when to demote a process

— method to determine which queue a process will enter when
that process needs service

It is the most general CPU scheduling algorithm. Can be
configured to match a specific system under design.

Example of Multilevel Feedback Queue

Three queues:

I — Q- time quantum 8
quantum = 8 - @, -time quantum 16
milliseconds
- Q,-FCFS

Scheduling
— Anew job enters queue Q,

‘ When it gains CPU, job
i 8 milli: Ifit
quantum = 16 does not finish in 8
milliseconds, job is moved
to queue Q,.
— At Q, job is again served RR
and receives 16 additional

milliseconds. If it still does
not itis

FCFS I) preempted and moved to
queue Q,.

— Always preemptive.

Scheduling in multi-CPU Era

- Multiple-Processor Scheduling
— Multi-core scheduling

- Scheduling for multiple systems
— Load balancer (long-term scheduler)

— Scheduling for distributed systems

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available.

- Hc g IS pre s within a multiprocessor.
— Any available processor can then be used to run any process in
the queue.

- One common ready queue vs. a separate queue for each CPU.

Asy tric multipr ing — one processor (master) schedules
for all processors

— only one processor accesses the system data structures
— alleviating the need for data sharing.
Sy ic multiprc ing — each processor is self-scheduling
— Each processor select its processes from the queue
— Process synchronization when accessing common queues

Real-Time Scheduling

- Hard real-time systems — requires to complete a critical task within
a guaranteed amount of time.

— Hard to achieve in a general-purpose computer.

- Soft real-time computing — requires that the real-time processes
receive priority over others (no aging).

- The dispatch latency must be small > preempt system call (kernel)
— Adding preemption points (safe points) in system calls

— Making the entire kernel preemptive by using process
synchronization technique to protect all critical region

Linux Scheduling

Linux scheduling algorithm is preemptive, priority-based, variable-
length RR, with complexity O(1).
Priority values are dynamically adjusted.

numeric relative time
priority priority quantum

o highest 200 ms

140 lowest

Use two so-called run-queues for READY queue:

active expired
array array

priority task lists priority task lists

0] oo (0] o—0—0

8] o0—0—0 8] °

[40] o [40) oo

Scheduling Algorithm Evaluation

- Analytic evaluation: deterministic modeling

— Given a pre-determined workload, calculate the performance
of each algorithm for that workload.

- Queuing Models

— No static workload available, so use the probabilistic
distribution of CPU and 1/O bursts.

— Use queuing-network analysis.

— The classes of algorithms and distributions that can be
handled in this way are fairly limited.

ion: use a simulator to model a computer system

— simulator is driven by random-number generator according
to certain distributions.

— Simulator is driven by a trace file, which records actual events
happened in a real system.

