
Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 1

CSE 3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

No.5

 Process Synchronization(1)

Background:
cooperating processes with

shared memory

·  Many processes or threads are cooperating:
–  One way is to use shared memory.

·  But concurrent access to shared data may result in data
inconsistency.

·  To share data among processes (threads), we need
some mechanisms to ensure the orderly execution of
cooperating processes (threads) to maintain data
consistency.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 2

Process Synchronization
·  How data inconsistency happens?

–  Example: producer-consumer problem using a
bounded-buffer

·  Pure software solution:
–  2-process: Peterson’s algorithm
–  N-process: Bakery algorithm

·  Synchronization hardware
·  Semaphores
·  Three classic synchronization problems:

–  The bounded-buffer problem.
–  The reader-writer problem.
–  The dining-philosopher problem.

Producer-Consumer Problem:
using shared memory

·  Producer-Consumer problem:
–  Two parties: producer & consumer processes
–  A producer process produces information that is

consumed by a consumer process.
–  Shared memory:

•  Bounded buffer: a fixed buffer size (producer
blocks when the buffer is full)

–  Example:
•  Printer program  printer driver
•  Compiler  assembler

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 3

Bounded-Buffer
Producer-consumer problem (1)
·  Shared data

#define BUFFER_SIZE 10
typedef struct {
 . . .

} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
int counter = 0;

Bounded-Buffer
Producer-consumer problem (2)
·  Producer process

 item nextProduced;

 while (1) {

 … /* generate a new item in nextProduced */

 while (counter == BUFFER_SIZE) ; /* do nothing */

 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
 }

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 4

Bounded-Buffer
Producer-consumer problem(3)
·  Consumer process

 item nextConsumed;

 while (1) {
 while (counter == 0) ; /* do nothing */
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;

 … /* consume the item in nextConsumed */

 }

Bounded-Buffer
Producer-consumer problem (4)

·  If both the producer and consumer attempt to
update the buffer concurrently, the assembly
language statements may get interleaved.

–  which causes unexpected results

·  Interleaving depends upon how the producer and
consumer processes are scheduled.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 5

Bounded-Buffer
Producer-consumer problem (5)
·  The statement “counter++” may be implemented in

machine language as:

register1 = counter
 register1 = register1 + 1
counter = register1

·  The statement “counter--” may be implemented as:

register2 = counter
register2 = register2 – 1
counter = register2

Bounded-Buffer
Producer-consumer problem(6)
·  Assume counter is initially 5.
·  First step: producer process adds a new item

 producer: register1 = counter (register1 = 5)

producer: register1 = register1 + 1 (register1 = 6)
producer: counter = register1 (counter = 6)

·  Second Step: consumer process takes one item

 consumer: register2 = counter (register2 = 6)
consumer: register2 = register2 – 1 (register2 = 5)
consumer: counter = register2 (counter = 5)

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 6

Bounded-Buffer
Producer-consumer problem(7)

·  Initially counter=5.
·  One interleaving of statements is:

producer: register1 = counter (register1 = 5)
producer: register1 = register1 + 1 (register1 = 6)

 consumer: register2 = counter (register2 = 5)
consumer: register2 = register2 – 1 (register2 = 4)

 producer: counter = register1 (counter = 6)

 consumer: counter = register2 (counter = 4)

·  The value of count ends up with 4 (incorrect!!)

Producer process is preempted  context switch  …  to consumer process

Consumer process is preempted  context switch  …  to producer process

Producer is pre-empted again

Race Condition
·  Race condition: The situation where several processes

(or threads) access and manipulate shared data
concurrently. The final value of the shared data depends
upon the particular order in which the access takes
place.

–  General to all shared data in multiprogramming
systems.

·  Race condition happens in:
–  Multiple processes with shared memory
–  Multi-threaded program
–  Preemptive OS kernel

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 7

Race Conditions in OS

·  Non-preemptive kernels
–  No race condition occurs in kernel.

·  Preemptive kernels
–  Race condition could occur in kernel.
–  Protection techniques are needed for all shared data.
–  Examples:

•  Moving several PCB’s from one waiting queue to
ready queue; moving several PCB’s to the same
waiting queue.

•  Kernel counters; kernel flags, …

Bounded-Buffer
Producer-consumer problem (8)
·  The statements

counter++; (in producer)

 counter--; (in consumer)

must be performed atomically.

·  Atomic operation means an operation that
completes in its entirety without interruption.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 8

Process Synchronization

·  Process synchronization: To prevent race conditions,
concurrent processes must be synchronized to
ensure an orderly execution sequence for all
processes.

–  To ensure only one process can manipulate the
shared data at a time.

 (the key idea of process synchronization)

The Critical-Section Problem(1)

·  n processes all competing to use some shared data.

·  Each process has code segments, called critical
section, in which the shared data is accessed.

·  Ensure that when one process is executing in its
critical section, no other processes are allowed to
execute in their critical sections.

–  The execution of critical sections by processes is
mutually exclusive in time.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 9

The Critical-Section Problem(2)

·  General structure of each process Pi

 do {
 entry section

 critical section

 exit section

 remainder section
 } while (1);

Solution to Critical-Section Problem
1.  Mutual Exclusion

•  If a process is executing in its critical section, then no other
processes can be executing in their critical sections.

2.  Progress
•  If no process in its critical section and some processes wish to

enter their critical sections, then only these processes wishing
to enter the critical section can participate in the decision on
which will enter the critical section next, and the decision
selection of the processes cannot be postponed indefinitely.

3.  Bounded Waiting
•  After a process has made a request to enter its critical section,

there much be a bound on the number of times that other
processes are allowed to enter their critical sections before that
request is granted.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 10

Software Solution to
the critical section problem

·  Assume each process is executing at a non-zero speed. No
assumption on their relative speed.

·  No assumption on special hardware instructions except each
instruction is executed atomically.

·  No assumption on the number of CPU’s in the system.

·  Starting from the case with only two processes:
–  Process P0 and P1

–  When presenting Pi, use Pj to indicate another (j=1-i)

·  Combined shared variables of algorithms 1 and 2.
 boolean flag[2]; initially flag [0] = flag [1] = false.
 int turn; initially turn = 0 or 1.
·  Process Pi

 do {
 flag [i] = true;

 turn = j;
 while (flag [j] && turn == j) ;

 critical section
 flag [i] = false;
 remainder section
 } while (1);

·  Meets all three requirements; solves the critical-section problem
for two processes perfectly.

Peterson’s solution

Signaling Pi wish to enter
the critical section

Asserting that if the other
process wish to enter the
critical section, it can do

Checking which will enter
the critical section

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 11

Proving Peterson’s Algorithm

Process P0:

do {
 flag [0] = true;
 turn = 1;
 while (flag [1] && turn == 1) ;
 critical section of P0

 flag [0] = false;
 remainder section of P0

} while (1);

Process P1:

do {
 flag [1] = true;
 turn = 0;
 while (flag [0] && turn == 0) ;
 critical section of P1

 flag [1] = false;
 remainder section of P1

} while (1);

Modification 1
·  Shared variables:

–  int turn;
initially turn = 0

–  turn == i  Pi can enter its critical section.
·  Process Pi

 do {
 while (turn != i) ;
 critical section
 turn = j;
 remainder section
 } while (1);

·  Satisfies mutual exclusion, but not progress.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 12

Modification 1 works?

Process P0:

do {
 while (turn != 0) ;
 critical section of P0

 turn = 1;
 remainder section of P0

} while (1);

Process P1:

do {
 while (turn != 1) ;
 critical section of P1

 turn = 0;
 remainder section of P1

} while (1);

Shared variables:
int turn; initially turn = 0

Modification 2
·  Shared variables

–  boolean flag[2];
initially flag [0] = flag [1] = false.

–  flag [i] == true  Pi requests to enter its critical section.
·  Process Pi

 do {
 flag[i] = true;

 while (flag[j]) ;
 critical section
 flag[i] = false;
 remainder section
 } while (1);
·  Satisfies mutual exclusion, but not progress requirement.

Signal that Pi is ready to
enter its critical section

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 13

Modification 2 works?

Process P0:

do {
 flag [0] = true;
 while (flag [1]) ;
 critical section of P0

 flag [0] = false;
 remainder section of P0

} while (1);

Process P1:

do {
 flag [1] = true;
 while (flag [0]) ;
 critical section of P1

 flag [1] = false;
 remainder section of P1

} while (1);

Shared variables
boolean flag[2];
initially flag [0] = flag [1] = false.
flag [i] == true  Pi requests to enter its critical section.

Bakery Algorithm(1)

·  To solve critical section problem with n processes.

·  Before entering its critical section, each process receives a number.
Holder of the smallest number enters the critical section first.

·  The numbering scheme always generates numbers in increasing
order of enumeration; i.e., 1,2,3,3,3,3,4,5...

·  If processes Pi and Pj receive the same number, then comparing
their process number, if i < j, then Pi enters first; else Pj enters first.

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 14

Bakery Algorithm(2)

·  Notation: (ticket #, process id #)
–  (a,b) < (c,d) if a < c or if a = c and b < d
–  max (a0 , a1 , … , an-1) is a number, k, such that k >= ai
 for i = 0, …, n – 1

·  Shared data
 boolean choosing[n]; (Initially false)
 int number[n]; (Initially 0)

Bakery Algorithm(3)

do {
 choosing[i] = true;
 number[i] = max(number[0], number[1], …, number [n – 1])+1;
 choosing[i] = false;
 for (j = 0; j < n; j++) {
 while (choosing[j]) ;
 while ((number[j] != 0) && (number[j],j) < (number[i],i)) ;
 }
 critical section
 number[i] = 0;
 remainder section

} while (1);

The Structure of process Pi

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 15

Bakery Algorithm(3)

do {

 number[i] = max(number[0], number[1], …, number [n – 1])+1;

 for (j = 0; j < n; j++) {

 while ((number[j] != 0) && (number[j],j) < (number[i],i)) ;
 }
 critical section
 number[i] = 0;
 remainder section

} while (1);

The Structure of process Pi

Synchronization Hardware

·  In a uni-processor case, disable interrupt while a
shared variable is being modified.

–  Not feasible in a multiprocessor case
–  Not possible in user-space

·  Many popular CPUs support a limited number of
atomic operations:

–  Atomic integer instructions
–  Atomic bit operation instructions
–  Atomic TestAndSet instruction
–  Atomic Swap instruciton

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 16

TestAndSet Instruction

·  TestAndSet: test and modify the content of a word atomically.

·  Atomic even in multi-processor case: if two TestAndSet
instructions are executed simultaneously on two different CPUs,
they will be executed sequentially in some arbitrary order.

boolean TestAndSet (boolean &target) {"
"boolean rv = target;!
!target = true;!

!
 return rv;!
}"

Mutual Exclusion with TestAndSet
(for multiple processes)

·  Shared data:
 boolean lock = false;

·  Process Pi

 do {
 while (TestAndSet(lock)) ;
 critical section
 lock = false;
 remainder section
 }

Prepared by Prof. Hui Jiang (CSE
3221)

13-02-25

Dept. of CSE, York Univ. 17

Swap instruction

·  Swap the contents of two words atomically as one
uninterruptible unit.

void Swap(boolean &a, boolean &b) {"
" "boolean temp = a;!
! !a = b;!
! !b = temp;!

 }

Mutual Exclusion with Swap
(for multiple processes)

·  Shared data:
 boolean lock; (initialized to false)

·  Process Pi (with a local variable key)
 do {
 key = true;
 while (key == true)
 Swap(lock,key);
 critical section
 lock = false;
 remainder section
 }

