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 Process Synchronization(1) 

Background: 
cooperating processes with 

shared memory 

·  Many processes or threads are cooperating: 
–  One way is to use shared memory. 

·  But concurrent access to shared data may result in data 
inconsistency. 

·  To share data among processes (threads), we need 
some mechanisms to ensure the orderly execution of 
cooperating processes (threads) to maintain data 
consistency. 
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Process Synchronization 
·  How data inconsistency happens? 

–  Example: producer-consumer problem using a 
bounded-buffer 

·   Pure software solution: 
–  2-process: Peterson’s algorithm 
–  N-process: Bakery algorithm 

·  Synchronization hardware 
·  Semaphores 
·  Three classic synchronization problems: 

–  The bounded-buffer problem. 
–  The reader-writer problem. 
–  The dining-philosopher problem. 

Producer-Consumer Problem: 
using shared memory 

·  Producer-Consumer problem: 
–  Two parties: producer & consumer processes 
–  A producer process produces information that is 

consumed by a consumer process. 
–  Shared memory: 

•  Bounded buffer: a fixed buffer size (producer 
blocks when the buffer is full) 

–  Example: 
•  Printer program  printer driver 
•  Compiler  assembler 
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Bounded-Buffer  
Producer-consumer problem (1) 
·  Shared data 

 
#define BUFFER_SIZE 10 
typedef struct { 
 . . . 

} item; 
item buffer[BUFFER_SIZE]; 
int in = 0; 
int out = 0; 
int counter = 0; 
 

Bounded-Buffer  
Producer-consumer problem (2) 
·  Producer process  
 

 item nextProduced; 
 
 while (1) { 

 
             …  /* generate a new item in nextProduced */ 
 

  while (counter == BUFFER_SIZE) ; /* do nothing */ 
 

  buffer[in] = nextProduced; 
  in = (in + 1) % BUFFER_SIZE; 
  counter++; 
 } 
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Bounded-Buffer  
Producer-consumer problem(3) 
·  Consumer process  
 

 item nextConsumed; 
 
 while (1) { 
  while (counter == 0)  ;    /* do nothing */ 
  nextConsumed = buffer[out]; 
  out = (out + 1) % BUFFER_SIZE; 
  counter--; 

 
 
            … /* consume the item in nextConsumed */ 

 } 

Bounded-Buffer  
Producer-consumer problem (4) 

·  If both the producer and consumer attempt to 
update the buffer concurrently, the assembly 
language statements may get interleaved. 

–  which causes unexpected results 

·  Interleaving depends upon how the producer and 
consumer processes are scheduled. 
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Bounded-Buffer  
Producer-consumer problem (5) 
·  The statement “counter++” may be implemented in 

machine language as: 
 
register1 = counter 
 register1 = register1 + 1 
counter = register1 
 
·  The statement “counter--” may be implemented as: 

 
register2 = counter 
register2 = register2 – 1 
counter = register2 

Bounded-Buffer  
Producer-consumer problem(6) 
·  Assume counter is initially 5.  
·  First step: producer process adds a new item 

 
   producer: register1 = counter (register1 = 5) 

producer: register1 = register1 + 1 (register1 = 6) 
producer: counter = register1 (counter = 6) 
 
·  Second Step: consumer process takes one item 

   consumer: register2 = counter (register2 = 6) 
consumer: register2 = register2 – 1 (register2 = 5) 
consumer: counter = register2 (counter = 5) 



Prepared by Prof. Hui Jiang (CSE 
3221) 

13-02-25 

Dept. of CSE, York Univ. 6 

Bounded-Buffer  
Producer-consumer problem(7) 

·  Initially counter=5.  
·  One interleaving of statements is: 

 
producer: register1 = counter (register1 = 5) 
producer: register1 = register1 + 1 (register1 = 6) 
 

    consumer: register2 = counter (register2 = 5) 
consumer: register2 = register2 – 1 (register2 = 4) 
 

 
    producer: counter = register1 (counter = 6) 

 
 
     consumer: counter = register2 (counter = 4) 

 
·  The value of count ends up with 4 (incorrect!! ) 

Producer process is preempted  context switch  …  to consumer process  

Consumer process is preempted  context switch  …  to producer process  

Producer is pre-empted again 

Race Condition 
·  Race condition: The situation where several processes 

(or threads) access and manipulate shared data 
concurrently. The final value of the shared data depends 
upon the particular order in which the access takes 
place. 

–  General to all shared data in multiprogramming 
systems. 

·  Race condition happens in: 
–  Multiple processes with shared memory 
–  Multi-threaded program 
–  Preemptive OS kernel 
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Race Conditions in OS 

·  Non-preemptive kernels 
–  No race condition occurs in kernel. 

·  Preemptive kernels 
–  Race condition could occur in kernel. 
–  Protection techniques are needed for all shared data. 
–  Examples:   

•  Moving several PCB’s from one waiting queue to 
ready queue; moving several PCB’s to the same 
waiting queue. 

•  Kernel counters; kernel flags, …   

Bounded-Buffer  
Producer-consumer problem (8) 
·  The statements 

 
counter++;  (in producer) 
  

    counter--;   (in consumer) 
  
must be performed atomically. 

·  Atomic operation means an operation that 
completes in its entirety without interruption. 
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Process Synchronization 

·  Process synchronization: To prevent race conditions, 
concurrent processes must be synchronized to 
ensure an orderly execution sequence for all 
processes. 

–  To ensure only one process can manipulate the 
shared data at a time. 

    (the key idea of process synchronization) 

The Critical-Section Problem(1) 

·  n processes all competing to use some shared data. 

·  Each process has code segments, called critical 
section, in which the shared data is accessed. 

·  Ensure that when one process is executing in its 
critical section, no other processes are allowed to 
execute in their critical sections. 

–  The execution of critical sections by processes is 
mutually exclusive in time. 
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The Critical-Section Problem(2) 

·  General structure of each process Pi  

  do { 
   entry section 

 
    critical section 

 
   exit section 

 
    remainder section 
  } while (1); 

Solution to Critical-Section Problem 
1.  Mutual Exclusion  

•  If a process is executing in its critical section, then no other 
processes can be executing in their critical sections. 

2.  Progress  
•  If no process in its critical section and some processes wish to 

enter their critical sections, then only these processes wishing 
to enter the critical section can participate in the decision on 
which will enter the critical section next, and the decision 
selection of the processes cannot be postponed indefinitely. 

3.  Bounded Waiting 
•  After a process has made a request to enter its critical section, 

there much be a bound on the number of times that other 
processes are allowed to enter their critical sections before that 
request is granted. 
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Software Solution to  
the critical section problem 

·  Assume each process is executing at a non-zero speed. No 
assumption on their relative speed. 

·  No assumption on special hardware instructions except each 
instruction is executed atomically. 

·  No assumption on the number of CPU’s in the system. 

·  Starting from the case with only two processes: 
–  Process P0 and P1 

–  When presenting Pi, use Pj to indicate another (j=1-i) 

·  Combined shared variables of algorithms 1 and 2. 
     boolean flag[2]; initially flag [0] = flag [1] = false. 
     int turn;   initially turn = 0 or 1. 
·  Process Pi     

  do { 
   flag [ i ] = true; 

  turn = j; 
  while (flag [ j ] && turn == j) ; 

    critical section 
   flag [ i ] = false; 
    remainder section 
  } while (1); 

·  Meets all three requirements; solves the critical-section problem 
for two processes perfectly. 

Peterson’s solution 

Signaling Pi wish to enter  
the critical section 

Asserting that if the other 
process wish to enter the 
critical section, it can do 

Checking which will enter 
the critical section 
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Proving Peterson’s Algorithm 

Process  P0: 
 
do { 
    flag [ 0 ] = true; 
    turn = 1; 
    while (flag [ 1 ] && turn == 1) ; 
    critical section of P0 

    flag [ 0 ] = false; 
   remainder section of P0 

} while (1); 
 

Process  P1: 
 
do { 
    flag [ 1 ] =  true; 
    turn = 0; 
    while (flag [ 0 ] && turn == 0) ; 
    critical section of P1 

    flag [ 1 ] = false; 
   remainder section of P1 

} while (1); 
 

Modification 1 
·  Shared variables:  

–  int turn; 
initially turn = 0 

–  turn == i  Pi can enter its critical section. 
·  Process Pi 

  do { 
   while (turn != i) ; 
    critical section 
   turn = j; 
    remainder section 
  } while (1); 

·  Satisfies mutual exclusion, but not progress. 
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Modification 1 works? 

Process  P0: 
 
do { 
    while (turn != 0) ; 
    critical section of P0 

    turn = 1; 
   remainder section of P0 

} while (1); 
 

Process  P1: 
 
do { 
    while ( turn != 1) ; 
    critical section of P1 

   turn = 0; 
   remainder section of P1 

} while (1); 
 

Shared variables:  
int turn;   initially turn = 0 

Modification 2 
·  Shared variables 

–  boolean flag[2]; 
initially flag [0] = flag [1] = false. 

–  flag [i] == true  Pi requests to enter its critical section. 
·  Process Pi 

  do { 
   flag[ i ] = true; 

  while ( flag[ j ] ) ; 
       critical section 
   flag[ i ] = false; 
    remainder section 
  } while (1); 
·  Satisfies mutual exclusion, but not progress requirement. 

Signal that Pi is ready to 
enter its critical section 
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Modification 2 works? 

Process  P0: 
 
do { 
    flag [ 0 ] = true; 
   while (flag [ 1 ]) ; 
    critical section of P0 

    flag [ 0 ] = false; 
   remainder section of P0 

} while (1); 
 

Process  P1: 
 
do { 
    flag [ 1 ] =  true; 
    while (flag [ 0 ]) ; 
    critical section of P1 

    flag [ 1 ] = false; 
   remainder section of P1 

} while (1); 
 

Shared variables 
boolean flag[2]; 
initially flag [0] = flag [1] = false. 
flag [i] == true  Pi requests to enter its critical section. 

Bakery Algorithm(1) 

·  To solve critical section problem with n processes. 

·  Before entering its critical section, each process receives a number. 
Holder of the smallest number enters the critical section first. 

·  The numbering scheme always generates numbers in increasing 
order of enumeration; i.e., 1,2,3,3,3,3,4,5... 

·  If processes Pi and Pj receive the same number, then comparing 
their process number, if i < j, then Pi enters first; else Pj enters first. 
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Bakery Algorithm(2)  

·  Notation: (ticket #, process id #) 
–  (a,b) < (c,d) if a < c or if a = c and b < d 
–  max (a0  , a1  , … , an-1) is a number, k, such that k >= ai  
     for i = 0, …, n – 1 

·  Shared data 
  boolean choosing[n];  (Initially false) 
  int number[n];     (Initially  0 ) 

Bakery Algorithm(3)  

do {  
 choosing[ i ] = true; 
 number[ i ] = max(number[0], number[1], …, number [n – 1])+1; 
 choosing[ i ] = false; 
 for (j = 0; j < n; j++) { 
   while (choosing[ j ]) ;  
   while ((number[ j ] != 0) && (number[ j ],j) < (number[ i ],i)) ; 
 } 
  critical section 
 number[i] = 0; 
  remainder section 

} while (1); 

The Structure of process Pi 
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Bakery Algorithm(3)  

do {  
  
 number[ i ] = max(number[0], number[1], …, number [n – 1])+1; 
  
 for (j = 0; j < n; j++) { 
    
   while ((number[ j ] != 0) && (number[ j ],j) < (number[ i ],i)) ; 
 } 
  critical section 
 number[i] = 0; 
  remainder section 

} while (1); 

The Structure of process Pi 

Synchronization Hardware 

·  In a uni-processor case, disable interrupt while a 
shared variable is being modified. 

–  Not feasible in a multiprocessor case 
–  Not possible in user-space 

·  Many popular CPUs support a limited number of 
atomic operations: 

–  Atomic integer instructions 
–  Atomic bit operation instructions 
–  Atomic TestAndSet instruction 
–  Atomic Swap instruciton 
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TestAndSet Instruction 

·  TestAndSet: test and modify the content of a word atomically. 

·  Atomic even in multi-processor case: if two TestAndSet 
instructions are executed simultaneously on two different CPUs, 
they will be executed sequentially in some arbitrary order. 

boolean TestAndSet (boolean &target) {"
"boolean rv = target;!
!target = true;!

!
           return rv;!
}"
 

Mutual Exclusion with TestAndSet 
(for multiple processes) 

·  Shared data:  
 boolean lock = false; 

 
·  Process Pi 

  do { 
      while (TestAndSet(lock)) ; 
        critical section 
       lock = false; 
         remainder section 
    } 
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Swap instruction 

·  Swap the contents of two words atomically as one 
uninterruptible unit. 

void Swap(boolean &a, boolean &b) {"
" "boolean temp = a;!
! !a = b;!
! !b = temp;!

 } 

Mutual Exclusion with Swap 
(for multiple processes) 

·  Shared data:  
          boolean lock;   (initialized to false) 

·  Process Pi     (with a local variable key) 
  do { 
   key = true; 
   while (key == true)  
     Swap(lock,key); 
    critical section 
   lock = false; 
    remainder section 
  } 


