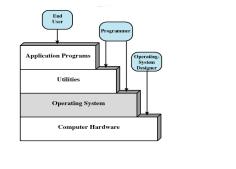
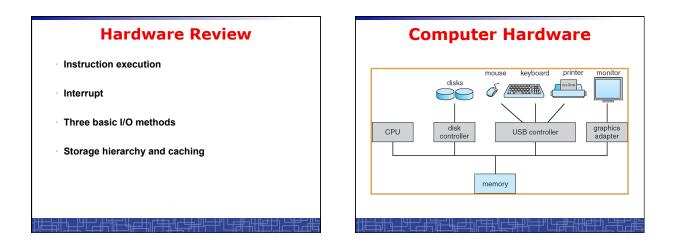

CSE 3221 Operating System Fundamentals

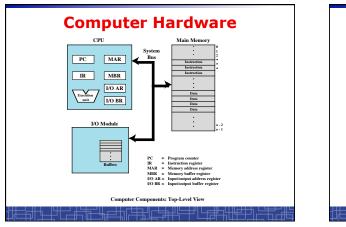
Instructor: Prof. Hui Jiang Email: <u>hj@cse.yorku.ca</u> Web: http://www.cse.yorku.ca/course/3221

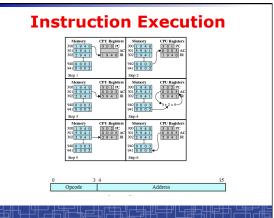
Bibliography

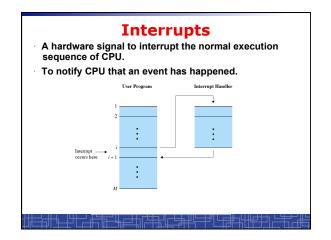
- Required textbook
 - "Operating System Concepts: 8th edition"
- Other reference books (optional):
 - "Advanced Programming in the Unix Environment" (for Unix programming, Unix API)
 - "Programming with POSIX threads" (Multithread programming in Unix, Pthread)
 - "Linux Kernel Development (2nd edition)" (understanding Linux kernel in details)

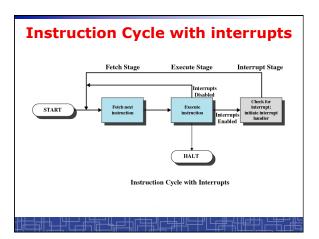

Why this course?

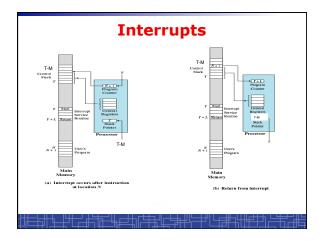

- OS is an essential part of any computer system
- To know
 - what's going on behind computer screens
 - how to design a complex software system
- Commercial OS:
 - Unix, BSD, Solaris, Linux, Mac OS, Android, Chrome OS
 - Microsoft DOS, Windows 95/98,NT,2000,XP,Vista, Win7, Win8

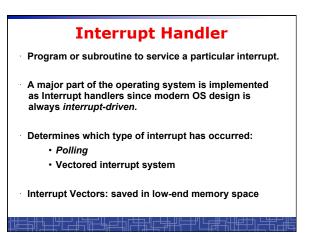

What is Operating System?

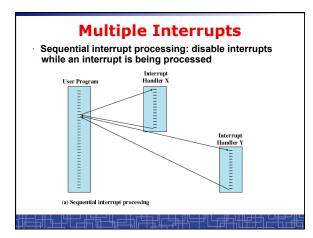

- A program that acts as an intermediary between computer users (user applications) and the computer hardware.
- Manage computer hardware:
 - Use the computer hardware efficiently.
 - Make the computer hardware convenient to use.
 - Control resource allocation.
 - Protect resource from unauthorized access.

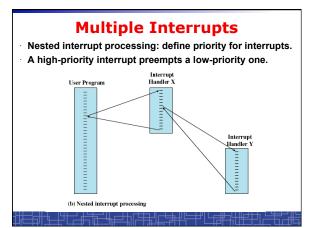

Computer Structure

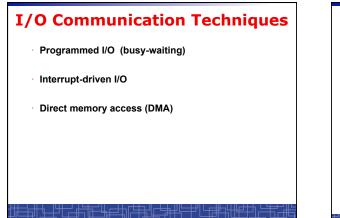


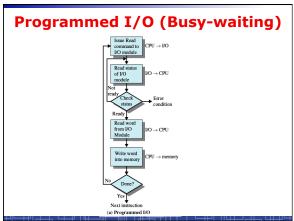


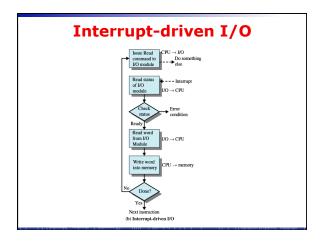


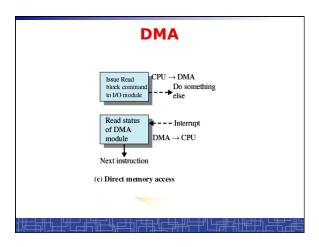


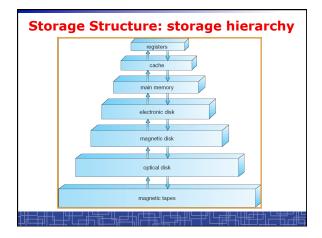


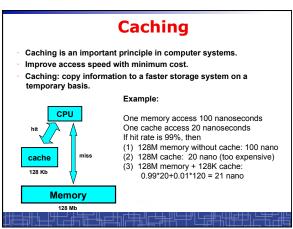


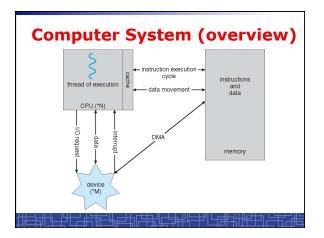


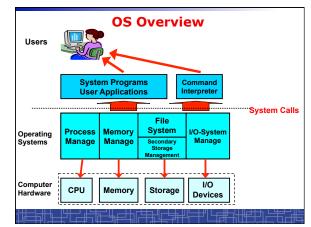









Storage Hierarchy


Level	1	2	3	4
Name	registers	cache	main memory	disk storage
Typical size	< 1 KB	> 16 MB	> 16 GB	> 100 GB
Implementation technology	custom memory with multiple ports, CMOS	on-chip or off-chip CMOS SRAM	CMOS DRAM	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 – 25	80 – 250	5,000.000
Bandwidth (MB/sec)	20,000 - 100,000	5000 - 10,000	1000 - 5000	20 – 150
Managed by	compiler	hardware	operating system	operating system
Backed by	cache	main memory	disk	CD or tape

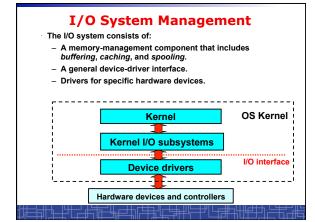
Volatile vs. Persistent

Caching • Why high hit rate? • Memory access is highly correlated • Locality of reference • Cache Design: • Cache size • Replacement algorithm: Least-Recently-Used (LRU) algorithm • Write policy: write memory when updated or replaced. • Normally implemented by hardware.

Process Management

- A process is a program in execution.
- A process needs certain resources, including CPU time, memory, files, and I/O devices, to accomplish its task.
- The operating system is responsible for the following activities in connection with process management.
 - Process creation and deletion.
 - Process suspension and resumption.
 - Provision of mechanisms for:
 - · Process synchronization
 - Inter-process communication
 - · Handling dead-lock among processes

Main-Memory Management


- Memory is a large array of words or bytes, each with its own address. It is a repository of quickly accessible data shared by the CPU and I/O devices.
- Main memory is a volatile storage device. It loses its contents in the case of system failure.
- For a program to be executed, it must be mapped to absolute addresses and loaded into memory.
- We keep several programs in memory to improve CPU utilization The operating system is responsible for the following activities in
- connections with memory management: - Keep track of memory usage.
- Manage memory space of all processes.
- Allocate and de-allocate memory space as needed.


Secondary-Storage Management

- Since main memory (*primary storage*) is volatile and too small to accommodate all data and programs permanently, the computer system must provide secondary storage to back up main memory.
- Most modern computer systems use hard disks as the principal on-line storage medium, for both programs and data.
- The operating system is responsible for the following activities in connection with disk management:
- Free space management
- Storage allocation
- Disk scheduling

File Management

- File system: a uniform logical view of information storage A File:
 - logical storage unit
 - a collection of related information defined by its creator.
 Commonly, files represent programs (both source and object forms) and data.
- Files are organized into directories to ease their use.
- The operating system is responsible for the following activities in connections with file management:
 - File Name-space management
 - File creation and deletion.
 - Directory creation and deletion.
 - Support of primitives for manipulating files and directories.
 - Mapping files onto secondary storage.
- File backup on stable (nonvolatile) storage media.

Content in this course

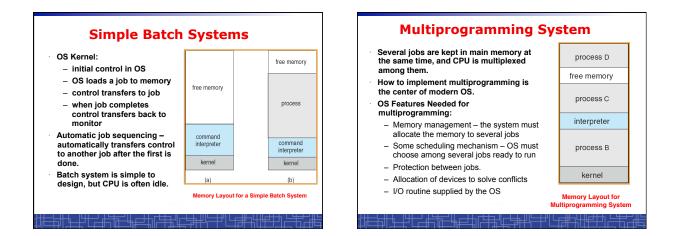
Managing CPU usage

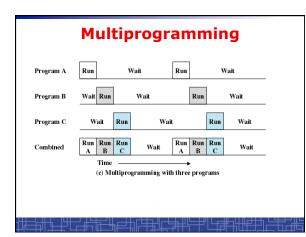
- Process and thread concepts
- Multi-process programming and multithread programming
 CPU scheduling
- Process Synchronization
- Deadlock
- Managing memory usage
- Memory management and virtual memory
- Managing secondary storage
- File system and its implementation
- Mass-storage structure
- Managing I/O devices:
- I/O systems
- Protection and Security

Case study on Unix series (scattered in all individual topics)

Tentative schedule (subject to change)

Totally 12 weeks:

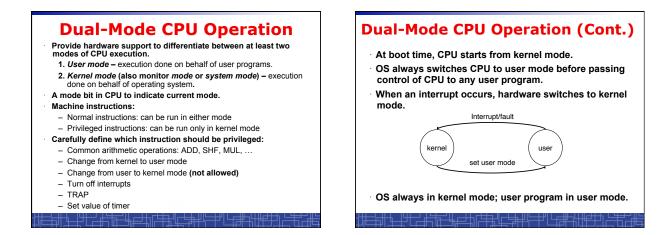

- · Background (2.5 week)
- · Process and Thread (2 weeks)
- · CPU scheduling (1 week)
- Process Synchronization (2.5 weeks)
- · Memory Management (2 weeks)
- · Virtual Memory (1 week)
- · Protection and Security (1 week)

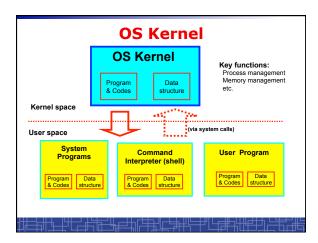

Several must-know OS concepts

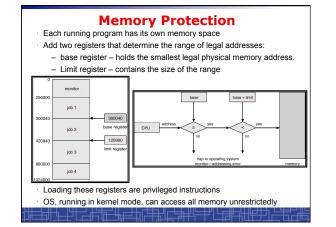
- Multiprogramming
- Hardware Protection
 OS Kernel
- System Calls

OS Booting

- Firmware: bootstrap program in ROM
 Diagnose, test, initialize system
- · Boot block in disc
- Entire OS loading


Multiprogramming: example


	JOB1	JOB2	JOB3
Type of job	Heavy compute	Heavy I/O	Heavy I/O
Duration	5 min	15 min	10 min
Memory required	50 M	100 M	75 M
Need disk?	No	No	Yes
Need terminal?	No	Yes	No
		1000	Yes
Need printer?	No Uniprogr	No	Multiprogramming
Need printer?	- 20000	12.00	
Need printer? Processor use	- 20000	12.00	
	Uniprog	12.00	Multiprogramming
Processor use	Uniprogr 20%	12.00	Multiprogramming 40%
Processor use Memory use	Uniprog 20% 33%	12.00	Multiprogramming 40% 67%
Processor use Memory use Disk use	Uniprogr 20% 33% 33%	amming	Multiprogramming 40% 67% 67%
Processor use Memory use Disk use Printer use	Uniprogr 20% 33% 33% 33%	r amming	Multiprogramming 40% 67% 67% 67%



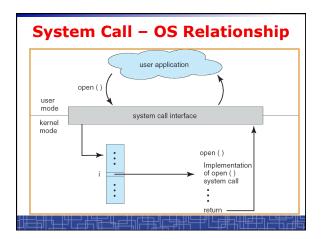
Hardware Protection

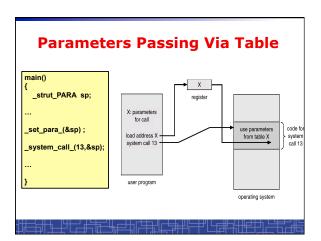
- Dual-mode Protection Strategy – OS Kernel
- Memory protection
- · CPU protection
- I/O protection

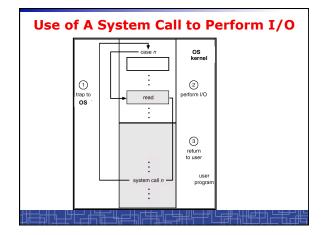
CPU Protection Timer – interrupts CPU after specified period to ensure operating system maintains control. – Timer is decremented every clock tick. – When timer reaches the value 0, an interrupt occurs. OS must set timer before turning over control to the user. Load-timer is a privileged instruction.

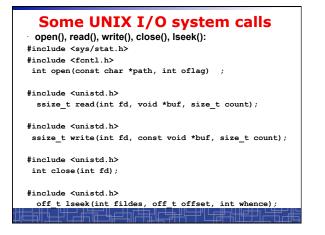
- Timer commonly used to implement time sharing.
- Timer is also used to compute the current time.

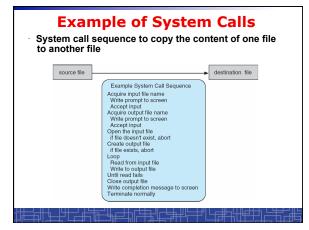
I/O Protection

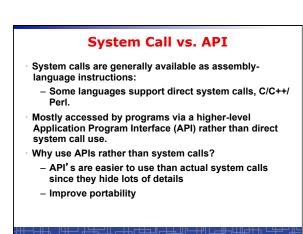

- To prevent users from performing illegal I/O, define all I/ O instructions to be privileged instructions.
- User programs can not do any I/O operations directly.
- User program must require OS to do I/O on its behalf: – OS runs in kernel mode
- OS first checks if the I/O is valid
- If valid, OS does the requested operation; Otherwise, do nothing.
- Then OS return to user program with status info.
- How a user program asks OS to do I/O
- Through SYSTEM CALL (software interrupt)

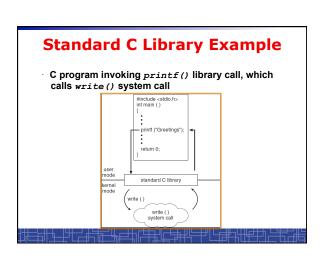

System Calls


- System calls provide the interface between a running user program and the operating system. Process and memory control:
- Create, terminate, abort a process.
- Load, execute a program.
- Get/Set process attribute.
- Wait for time (sleep), wait event, signal event.
- Allocate and free memory.
- Debugging facilities: trace, dump, time profiling.
- File management:
- create, delete, read, write, reposition, open, close, etc.
- I/O device management: request, release, open, close, etc.
- Information maintain: time, date, etc.
- Communication and all other I/O services.


System Call Implementation


- Typically, a unique number is associated with each system call:
 System-call interface maintains a table indexed according to these numbers.
- · Basically, every system call makes a software interrupt (TRAP).
- The system call interface invokes intended system call in OS kernel and returns status of the system call and any return values
- Three general methods are used to pass parameters between a running program and the operating system.
 - Pass parameters in registers.
 - Store the parameters in a table in memory, and the table address is passed as a parameter in a register.
 (This approach is taken by Linux and Solaris.)
 - Push (store) the parameters onto the stack by the program, and pop off the stack by operating system.





	Windows	Unix
Process Control	CreateProcess() ExitProcess() WaitForSingleObject()	<pre>fork() exit() wait()</pre>
File Manipulation	CreateFile() ReadFile() WriteFile() CloseHandle()	<pre>open() read() write() close()</pre>
Device Manipulation	SetConsoleMode() ReadConsole() WriteConsole()	<pre>ioctl() read() write()</pre>
Information Maintenance	GetCurrentProcessID() SetTimer() Sleep()	getpid() alarm() sleep()
Communication	CreatePipe() CreateFileMapping() MapViewOfFile()	<pre>pipe() shmget() mmap()</pre>
Protection	SetFileSecurity() InitlializeSecurityDescriptor() SetSecurityDescriptorGroup()	chmod() umask() chown()

Dept. of CS, York Univ.