
Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 1

CSE 3221
Operating System

Fundamentals

Instructor: Prof. Hui Jiang
Email: hj@cse.yorku.ca
Web: http://www.cse.yorku.ca/course/3221

General Info
·  3 lecture hours each week
·  2 assignments (2*5%=10%)
·  1 project (10%)
·  4-5 in-class short quizzes (10%)
·  In-class mid-term (30%)
·  Final Exam (40%) (final exam period)
·  In-class

–  Focus on basic concepts, principles and algorithms
–  Examples given in C
–  Brief case study on Unix series (mainly Linux)

·  Assignments and tests
–  Use C language

Bibliography

·  Required textbook
–  “Operating System Concepts: 8th edition”

·  Other reference books (optional):
–  “Advanced Programming in the Unix

Environment” (for Unix programming, Unix API)
–  “Programming with POSIX threads” (Multithread

programming in Unix, Pthread)
–  “Linux Kernel Development (2nd edition)”
 (understanding Linux kernel in details)

Why this course?
·  OS is an essential part of any computer system

·  To know
–  what’s going on behind computer screens
–  how to design a complex software system

·  Commercial OS:
–  Unix, BSD, Solaris, Linux, Mac OS, Android, Chrome

OS
–  Microsoft DOS, Windows 95/98,NT,2000,XP,Vista,

Win7, Win8

What is Operating System?

·  A program that acts as an intermediary between
computer users (user applications) and the computer
hardware.

·  Manage computer hardware:
–  Use the computer hardware efficiently.
–  Make the computer hardware convenient to use.
–  Control resource allocation.
–  Protect resource from unauthorized access.

Computer Structure

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 2

Hardware Review

·  Instruction execution

·  Interrupt

·  Three basic I/O methods

·  Storage hierarchy and caching

Computer Hardware

Computer Hardware

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main Memory

System
Bus

I/O Module

•
•
•

•
•
•

•
•
•

Buffers

Instruction

0
1
2

n - 2
n - 1

Data
Data
Data
Data

Instruction
Instruction

Figure 1.1 Computer Components: Top-Level View

PC! =! Program counter
IR! =! Instruction register
MAR! =! Memory address register
MBR! =! Memory buffer register
I/O AR!=! Input/output address register
I/O BR!=! Input/output buffer register

Execution
unit

Instruction Execution

Interrupts
·  A hardware signal to interrupt the normal execution

sequence of CPU.
·  To notify CPU that an event has happened.

Instruction Cycle with interrupts

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 3

Interrupts

T-M

T-M

T-M

T-M

Interrupt Handler
·  Program or subroutine to service a particular interrupt.

·  A major part of the operating system is implemented
as Interrupt handlers since modern OS design is
always interrupt-driven.

·  Determines which type of interrupt has occurred:
•  Polling
•  Vectored interrupt system

·  Interrupt Vectors: saved in low-end memory space

Multiple Interrupts
·  Sequential interrupt processing: disable interrupts

while an interrupt is being processed

Multiple Interrupts
·  Nested interrupt processing: define priority for interrupts.
·  A high-priority interrupt preempts a low-priority one.

I/O Communication Techniques

·  Programmed I/O (busy-waiting)

·  Interrupt-driven I/O

·  Direct memory access (DMA)

Programmed I/O (Busy-waiting)

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 4

Interrupt-driven I/O DMA

Storage Structure: storage hierarchy
Storage Hierarchy

Volatile vs. Persistent

Caching
·  Caching is an important principle in computer systems.
·  Improve access speed with minimum cost.
·  Caching: copy information to a faster storage system on a

temporary basis.

CPU

cache

Memory

hit

miss

128 Mb

128 Kb

Example:

One memory access 100 nanoseconds
One cache access 20 nanoseconds
If hit rate is 99%, then
(1)  128M memory without cache: 100 nano
(2)  128M cache: 20 nano (too expensive)
(3)  128M memory + 128K cache:
 0.99*20+0.01*120 = 21 nano

Caching
·  Why high hit rate?

–  Memory access is highly correlated
–  Locality of reference

·  Cache Design:
–  Cache size
–  Replacement algorithm: Least-Recently-Used (LRU)

algorithm
–  Write policy: write memory when updated or replaced.
–  Normally implemented by hardware.

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 5

Computer System (overview)

System Programs
User Applications

OS Overview

Computer
Hardware

Operating
Systems

CPU Memory I/O
Devices Storage

Process
Manage

Memory
Manage

File
System
Secondary

Storage
Management

I/O-System
Manage

Command
Interpreter

System Calls

Users

Process Management
·  A process is a program in execution.
·  A process needs certain resources, including CPU time,

memory, files, and I/O devices, to accomplish its task.
·  The operating system is responsible for the following

activities in connection with process management.
–  Process creation and deletion.
–  Process suspension and resumption.
–  Provision of mechanisms for:

•  Process synchronization
•  Inter-process communication
•  Handling dead-lock among processes

Main-Memory Management
·  Memory is a large array of words or bytes, each with its own

address. It is a repository of quickly accessible data shared by
the CPU and I/O devices.

·  Main memory is a volatile storage device. It loses its contents in
the case of system failure.

·  For a program to be executed, it must be mapped to absolute
addresses and loaded into memory.

·  We keep several programs in memory to improve CPU utilization
·  The operating system is responsible for the following activities in

connections with memory management:
–  Keep track of memory usage.
–  Manage memory space of all processes.
–  Allocate and de-allocate memory space as needed.

Secondary-Storage Management
·  Since main memory (primary storage) is volatile and too small

to accommodate all data and programs permanently, the
computer system must provide secondary storage to back up
main memory.

·  Most modern computer systems use hard disks as the principal
on-line storage medium, for both programs and data.

·  The operating system is responsible for the following activities
in connection with disk management:
–  Free space management
–  Storage allocation
–  Disk scheduling

File Management
·  File system: a uniform logical view of information storage
·  A File:

–  logical storage unit
–  a collection of related information defined by its creator.

Commonly, files represent programs (both source and object
forms) and data.

·  Files are organized into directories to ease their use.
·  The operating system is responsible for the following activities in

connections with file management:
–  File Name-space management
–  File creation and deletion.
–  Directory creation and deletion.
–  Support of primitives for manipulating files and directories.
–  Mapping files onto secondary storage.
–  File backup on stable (nonvolatile) storage media.

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 6

I/O System Management
·  The I/O system consists of:

–  A memory-management component that includes
buffering, caching, and spooling.

–  A general device-driver interface.
–  Drivers for specific hardware devices.

Hardware devices and controllers

Device drivers

Kernel I/O subsystems

Kernel OS Kernel

I/O interface

Protection System

·  Protection refers to a mechanism for controlling
access by programs, processes, or users to both
system and user resources.

·  The protection mechanism must:
–  distinguish between authorized and

unauthorized usage.
–  specify the controls to be imposed.
–  provide a means of enforcement.

Content in this course
·  Managing CPU usage

–  Process and thread concepts
–  Multi-process programming and multithread programming
–  CPU scheduling
–  Process Synchronization
–  Deadlock

·  Managing memory usage
–  Memory management and virtual memory

·  Managing secondary storage
–  File system and its implementation
–  Mass-storage structure

·  Managing I/O devices:
–  I/O systems

·  Protection and Security
·  Case study on Unix series (scattered in all individual topics)

Tentative schedule
(subject to change)

·  Background (2.5 week)
·  Process and Thread (2 weeks)
·  CPU scheduling (1 week)
·  Process Synchronization (2.5 weeks)
·  Memory Management (2 weeks)
·  Virtual Memory (1 week)
·  Protection and Security (1 week)

Totally 12 weeks:

Several must-know
OS concepts

·  System Boot

·  Multiprogramming

·  Hardware Protection
–  OS Kernel

·  System Calls

OS Booting

·  Firmware: bootstrap program in ROM
–  Diagnose, test, initialize system

·  Boot block in disc

·  Entire OS loading

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 7

Simple Batch Systems

·  OS Kernel:
–  initial control in OS
–  OS loads a job to memory
–  control transfers to job
–  when job completes

control transfers back to
monitor

·  Automatic job sequencing –
automatically transfers control
to another job after the first is
done.

·  Batch system is simple to
design, but CPU is often idle.

Memory Layout for a Simple Batch System!

Multiprogramming System

·  Several jobs are kept in main memory at
the same time, and CPU is multiplexed
among them. "

·  How to implement multiprogramming is
the center of modern OS.

·  OS Features Needed for
multiprogramming:

–  Memory management – the system must
allocate the memory to several jobs

–  Some scheduling mechanism – OS must
choose among several jobs ready to run

–  Protection between jobs.
–  Allocation of devices to solve conflicts
–  I/O routine supplied by the OS

Memory Layout for !
Multiprogramming System!

Multiprogramming Multiprogramming: example

Time-Sharing Systems (Multitasking)
–Interactive Computing

·  Multitasking also allows time sharing among jobs:
Job switch is so frequent that the user can interact
with each program while it is running.

·  Allow many users share a single computer
·  To achieve a reasonable response time, a job is

swapped into and out of the disk from memory.
·  The CPU is multiplexed among several jobs that are

kept in memory and on disk (CPU is allocated to a
job only if the job is in memory).

Hardware Protection

·  Dual-mode Protection Strategy
–  OS Kernel

·  Memory protection

·  CPU protection

·  I/O protection

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 8

Dual-Mode CPU Operation
·  Provide hardware support to differentiate between at least two

modes of CPU execution.
1. User mode – execution done on behalf of user programs.
2. Kernel mode (also monitor mode or system mode) – execution

done on behalf of operating system.
·  A mode bit in CPU to indicate current mode.
·  Machine instructions:

–  Normal instructions: can be run in either mode
–  Privileged instructions: can be run only in kernel mode

·  Carefully define which instruction should be privileged:
–  Common arithmetic operations: ADD, SHF, MUL, …
–  Change from kernel to user mode
–  Change from user to kernel mode (not allowed)
–  Turn off interrupts
–  TRAP
–  Set value of timer

Dual-Mode CPU Operation (Cont.)

·  At boot time, CPU starts from kernel mode.
·  OS always switches CPU to user mode before passing

control of CPU to any user program.
·  When an interrupt occurs, hardware switches to kernel

mode.

·  OS always in kernel mode; user program in user mode.

kernel" user"

Interrupt/fault"

set user mode"

OS Kernel

Kernel space

User space

OS Kernel

User Program

Command
Interpreter (shell)

System
Programs

Program
& Codes

Data
structure

Key functions:
 Process management
 Memory management
 etc.

Program
& Codes

Data
structure

Program
& Codes

Data
structure

Program
& Codes

Data
structure

(via system calls)

Memory Protection
·  Each running program has its own memory space
·  Add two registers that determine the range of legal addresses:

–  base register – holds the smallest legal physical memory address.
–  Limit register – contains the size of the range

·  Loading these registers are privileged instructions
·  OS, running in kernel mode, can access all memory unrestrictedly

CPU Protection

·  Timer – interrupts CPU after specified period to ensure
operating system maintains control.

–  Timer is decremented every clock tick.
–  When timer reaches the value 0, an interrupt occurs.

·  OS must set timer before turning over control to the user.
·  Load-timer is a privileged instruction.
·  Timer commonly used to implement time sharing.
·  Timer is also used to compute the current time.

I/O Protection

·  To prevent users from performing illegal I/O, define all I/
O instructions to be privileged instructions.

·  User programs can not do any I/O operations directly.
·  User program must require OS to do I/O on its behalf:

–  OS runs in kernel mode
–  OS first checks if the I/O is valid
–  If valid, OS does the requested operation;

Otherwise, do nothing.
–  Then OS return to user program with status info.

·  How a user program asks OS to do I/O
–  Through SYSTEM CALL (software interrupt)

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 9

System Calls
·  System calls provide the interface between a running user program

and the operating system.
·  Process and memory control:

–  Create, terminate, abort a process.
–  Load, execute a program.
–  Get/Set process attribute.
–  Wait for time (sleep), wait event, signal event.
–  Allocate and free memory.
–  Debugging facilities: trace, dump, time profiling.

·  File management:
–  create, delete, read, write, reposition, open, close, etc.

·  I/O device management: request, release, open, close, etc.
·  Information maintain: time, date, etc.
·  Communication and all other I/O services.

System Call Implementation

·  Typically, a unique number is associated with each system call:
–  System-call interface maintains a table indexed according to

these numbers.
·  Basically, every system call makes a software interrupt (TRAP).
·  The system call interface invokes intended system call in OS kernel

and returns status of the system call and any return values
·  Three general methods are used to pass parameters between a

running program and the operating system.
–  Pass parameters in registers.
–  Store the parameters in a table in memory, and the table

address is passed as a parameter in a register.
 (This approach is taken by Linux and Solaris.)
–  Push (store) the parameters onto the stack by the program, and

pop off the stack by operating system.

System Call – OS Relationship Parameters Passing Via Table

main()
{
 _strut_PARA sp;

…

_set_para_(&sp) ;

_system_call_(13,&sp);

…

}

Use of A System Call to Perform I/O

 OS

 OS
kernel

Some UNIX I/O system calls
·  open(), read(), write(), close(), lseek():
#include <sys/stat.h>
#include <fcntl.h>
 int open(const char *path, int oflag) ;

#include <unistd.h>
 ssize_t read(int fd, void *buf, size_t count);

#include <unistd.h>
 ssize_t write(int fd, const void *buf, size_t count);

#include <unistd.h>
 int close(int fd);

#include <unistd.h>
 off_t lseek(int fildes, off_t offset, int whence);

Prepared by Prof. Hui Jiang 13-01-07

Dept. of CS, York Univ. 10

Example of System Calls
·  System call sequence to copy the content of one file

to another file

System Call vs. API

·  System calls are generally available as assembly-
language instructions:

–  Some languages support direct system calls, C/C++/
Perl.

·  Mostly accessed by programs via a higher-level
Application Program Interface (API) rather than direct
system call use.

·  Why use APIs rather than system calls?
–  API’s are easier to use than actual system calls

since they hide lots of details
–  Improve portability

Standard C Library Example

·  C program invoking printf() library call, which
calls write() system call

System Calls: Unix vs. Windows

