Prepared by Prof. Hui Jiang
(COSC3221)

CSE3221.3
Operating System Fundamentals

No.2

Process

Prof. Hui Jiang
Dept of Computer Science and Engineering
York University

How OS manages CPU usage?

- How CPU is used?
— Users use CPU to run programs

- In a multiprogramming system, a CPU always has several jobs
running together.

- How to define a CPU job?
— The important concept:

Process

- Process is a running program, a program in execution.

- Process is a basic unit of CPU activities, a process is a unit of
work in a multiprogramming system.

- Many different processes in a multiprogramming system:
— User processes executing user code
« Word processor, Web browser, email editor, etc.
— System prc ting operating system codes
« CPU scheduling
« Memory-management
« 1/0 operation
- Multiple processes concurrently run in a CPU.

Dept. of CS, York Univ.

13-01-24

Prepared by Prof. Hui Jiang 13-01-24
(COSC3221)

Process vs. Program Code

Program code

Mov AX, 0x10
Mov BX, CX
Push CX
Mov CX,DX
OUT 0x11,CX z
POP CX 4

Memory

Process

- A Process includes:

— Text Section: memory segment including program
codes.

— Data Section: memory segment containing global
and static variables.

— Stack and Heap: memory segment to save temporary
data, such as local variable, function parameters,
return address, ...

— Program Counter (PC): the address of the
instruction to be executed next.

— All CPU’ s Registers

Process in Memory (I)

Main Processor
Memory Registers
Process. T
| I— LS m—
P Base]
it L =
T]
o B
retier :
==

Context
Process, Data
A I—
[Program
(code)
b
Context
Process Data
BoXn
[Program |
(code)

Dept. of CS, York Univ. 2

Prepared by Prof. Hui Jiang

(COSC3221)

Process in Memory (II)

max

stack

t

heap

data

text

Process Control Block

13-01-24

process state
process number

program counter

registers

memory limits

list of open files

Data Structure to represent a Process:
Process Control Block (PCB)

- Process state

- Program counter (PC)

- CPU registers

- CPU scheduling information
- Memory-management

information

- 11O status information
- Accounting information

struct task_struct {

Dept. of CS, York Univ.

Linux PCB

pid_t pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice; /*scheduling info*/
struct task_struct *parent; /* parent process*/
struct list_head children; /* all child processes*/
struct files_struct *files; /* list of open files*/
struct mm_struct *mm; /* memory space of process */

Prepared by Prof. Hui Jiang
(COSC3221)

Process States

admitted interrupt exit

terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

waiting

- New: the process is just being created

- Running: instructions are being executed by CPU

- Waiting: waiting for some event, I/O completion or a signal
- Ready: waiting to be assigned to CPU to run

- Terminated: it finished execution

Scheduling Queues (I)

- Scheduling Queues:
— List of processes competing for the same resource.

- Queues is generally implemented as linked lists.

- Each item in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

- In Linux, each queue is a doubly linked list of task_struct.

- Examples of scheduling queues:
— Ready Queue: all processes waiting for CPU

— Device Queues: all processes waiting for a particular device;
Each device has its own device queue.

Scheduling Queues (II)

queus header PCB, PCB,

ready | head
queve | tail registers registers.

mag [head =
ape

unito H: >
mag [head

uni 2

)

disk | _head
unit 0 tail
PCB,
erminal [_head +—— +—=
unito | el 4

Dept. of CS, York Univ.

13-01-24

Prepared by Prof. Hui Jiang
(COSC3221)

Queuing Diagram
: ready queue CPU
1/0 queue H 1/0 request |<—

time slice
expired

child fork a
executes child
interrupt wait for an
occurs interrupt

13-01-24

CPU Switch from process to process:
how to use PCB

process Pg operating system process Py

interrupt or system call

executing JL
T save state into PCB,

idle

reload state from PCB;

idle interrupt or system call executing

save state into PCB;

idle

reload state from PCB,|
executing JL

Context Switch

- Context Switch: switching the CPU from one process to another.
— Saving the state of old process to its PCB.
— CPU scheduling: select a new process.
— Loading the saved state in its PCB for the new process.

- The context of a process is represented by its PCB.

- Context-switch time is pure overhead of the system, typically
from 1-1000 microseconds, mainly depending on:

— Memory speed.

— Number of registers.

— Existence of special instruction.

— The more complex OS, the more to save.

- Context switch has become such a performance bottleneck in a
large multiprogramming system:

— New structure to reduce the overhead: THREAD.

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang
(COSC3221)

Context Switch:

Address Main Memory
0

100

Dispatcher
5000

Process A
000

Process B
12000

Process C

example

Program Counter

13-01-24

Trace of Processes

5000 8000
5001 8001
5002 8002
5003 8003
5004
5005
5006
5007
5008
5009
5010
5011

(a) Trace of Process A | (b) Trace of Process B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(9) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

1O request

100 = Starting address of dispatcher program

shaded sress indicate execution of dispatcher process;
first and third columas count instruction cycles:

E

Trace of Processes

Time out

second 2nd fourth columns show address of instruction being executed.

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang
(COSC3221)

Process State

Process A | [| [

Process C | I [[

05 kernel [| | [| \ |

[-ruming [] =Reaty B - waiting

Process Scheduling: Schedulers

- The scheduler’ s role

- CPU scheduler (Short-term scheduler)
— Select a process from ready queue to run once CPU is free.
— Executed very frequently (once every 100 millisecond).
— Must be fast enough for OS efficiency.

- Long-term Scheduler (Job scheduler):
— Choose a job from job pool to load into memory to start.
— Control the degree of multiprogramming — number of process in
memory.
— Select a good mix of I/0-bound processes and CPU-bound
processes.

Operations on Processes
(UNIX/Linux as an example)

- Process creation

- Process termination

- Inter-process communication (IPC)

- Multiple-process programming in Unix/Linux

— Cooperating process tasks.
— Important for multicore architecture

Dept. of CS, York Univ.

13-01-24

Prepared by Prof. Hui Jiang
(COSC3221)

Process Creation(1)

- A process can create some new processes via a create-
process system call:

— Parent process / children process.
- All process in Unix form a tree structure.

—— o]
= = =

Process Creation(2)

- Resource Allocation of child process
— The child process get its resource from OS directly.
— Constrain to its parent’ s resources.

- Parent status
— The parent continues to execute concurrently with its children.
— The parent waits until its children terminate.

- Initialization of child process memory space
— Child process is a duplicate of its parent process.

— Child process has a program loaded into it.

- How to pass parameters (initialization data) from parent to child?

UNIX Example: fork()

- In UNIX/Linux, each process is identified by its process number (pid).
In UNIX/Linux, fork() is used to create a new process.
- Creating a new process with fork():
— New child process is created by fork().

— Parent process’ address space is copied to new process’ space
(initially identical content in memory space).

— Both child and parent processes continue execution from the
instruction after fork().

— Return code of fork() is different: in child process, return code is
zero, in parent process, return code is nonzero (it is the process
number of the new child process)

— If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its original
memory space.

Dept. of CS, York Univ.

13-01-24

Prepared by Prof. Hui Jiang 13-01-24

(COSC3221)

Typical Usage of fork()

#include <stdio.h>
void main(int argc, char *argv[])

int pid ;

I* fork another process */
pid = fork() ;

if (pid < 0) { /* error occurred */
fprintf(stderr, “Fork Failed\n”) ;
exit(-1) ;
} else if (pid == 0) {/* child process*/
execlp(“/bin/ls”,”Is”,NULL) ;
} else { /* parent process */
[I* parent will wait for the child to complete */
wait(NULL) ;
printf (“Child Complete\n”) ;
exit(0) ;
}
}

Process Termination

- Normal termination:
— Finishes executing its final instruction or call exit() system call.
- Abnormal termination: make system call abort().
— The parent process can cause one of its child processes to
terminate.
* The child uses too much resources.
« The task assigned to the child is no longer needed.
« If the parent exits, all its children must be terminated in some
systems.
- Process termination:
— The process returns data (output) to its parent process.
« In UNIX, the terminated child process number is return by
wait() in parent process.

— All its resources are de-allocated by OS.

Multiple-Process Programming in Unix

Unix system calls for process control:
— getpid(): get process ID (pid) of calling process.

— fork(): create a new process.

exec(): load a new program to run.
« execl(char *pathname, char *arg0, ...) ;
« execv(char *pathname, char* argv[]) ;
« execle(), execve(), execlp(), execvp()

wait(), waitpid(): wait child process to terminate.

exit(), abort(): a process terminates.

Dept. of CS, York Univ.

Prepared by Prof. Hui Jiang
(COSC3221)

Cooperating Processes

- Concurrent processes executing in the operating system
— Independent: runs alone
— Cooperating: it can affect or be affected by other processes

- Why cooperating processes?
— Information sharing
— Computation speedup
— Modularity
— Convenience

- Inter-process communication (IPC) mechanism for cooperating
processes:

— Shared-memory
— Message-passing

IPC Approaches
process A

shared

process B process B

process A

LI

Inter-process Communication (IPC):
Message Passing

IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

- IPC based on message-passing system:
— Prc c ication without sharing space.
— Communication is done through the passing of messages.
— At least two system calls:
» send(message)
« receive(message)
— Message size: fixed vs. variable
— Logical communication link:
« Direct vs. indirect communication
« Blocking vs. non-blocking
« Buffering

Dept. of CS, York Univ.

13-01-24

10

Prepared by Prof. Hui Jiang 13-01-24
(COSC3221)

Direct Communication

- Each process must explicitly name the recipient or sender of the
communication.

— send(P,message)

— Receive(Q,message)
- Alink is established between each pair of processes
- Alink is associated with exactly two processes

- Asymmetric direct communication: no need for recipient to name
the sender

— send(P,message)

— receive(&id,message): id return the sender identity
- Disadvantage of direct communication:

— Limited modularity due to explicit process naming

Indirect Communication

- The messages are sent to and received from mailbox.

- Mailbox is a logical unit where message can be placed or removed by
processes. (each mailbox has a unique id)

— send(A,message): A is mailbox ID
— receive(A,message)
- Alink is established in two processes which share mailbox.
- Alink may be associated with more than two processes.
- A number of different link may exist between each pair of processes.
- OS provides some operations (system calls) on mailbox
— Create a new mailbox
— Send and receive message through the mailbox
— Delete a mailbox

Blocking vs. non-blocking
in message-passing

- Message passing may be either blocking or non-
blocking.

- Blocking is considered synchronous.
- Non-blocking is considered asynchronous.

- send() and receive() primitives may be either blocking
or non-blocking.

— Blocking send

— Non-blocking send

— Blocking receive

— Non-blocking receive

- When both the send and receive are blocking, we have
a rendezvous between the sender and the receiver.

Dept. of CS, York Univ. 11

Prepared by Prof. Hui Jiang
(COSC3221)

Buffering in message-passing

- The buffering provided by the logical link:

— Zero capacity: the sender must block until the
recipient receives the message (no buffering).

— Bounded capacity: the buffer has finite length. The
sender doesn’ t block unless the buffer is full.

— Unbounded capacity: the sender never blocks.

IPC in UNIX

*- Signals
*- Pipes
- Named pipe (FIFO)
- Message queues
- Shared memory
- Sockets

- others

Signal function in Unix

- Signal is a technique to notify a process that some events have
occurred.
- The process has three choices to deal with the signal:
— Ignore the signal
— Let the default action occur.
— Call a particular function when the signals occurs.
- signal() function: change the action function for a signal

#include <signal.h>

void (*signal(int signo, void (*func) (int)) ;

- kill() function: send a signal to another process

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

Dept. of CS, York Univ.

13-01-24

12

Prepared by Prof. Hui Jiang 13-01-24
(COSC3221)

Name | Description JANSIC POSIX.1|SVR4 43+BSD| Default action
"SIGABRT | abnormal termination (abort) | T |+« |terminate w/core
SIGALRM |time out (alaxm) | o e e Jteminate
SIGBUS |hardware fault |- + |terminate w/core
SrocHI> |change nsiamsofchild+ { o |« e fgnore
SIGCONT continue stopped process job |+« |continue/ignore
steMr |hardware fault | . |terminate w/core
SIGFPE arithmetic exception | R e
stoae b | o e |teminate
s1G1LL |illegal hardware instruction . o | e o |erminatew/core
SIGINFO |status request from keyboard | | « ignore
SIGINT |terminal interrupt character | s e e |terminate
$IGI0 |asynchronous /O j . + |terminate/ignore
SIGI0T | hardware fault |« |terminate w/core
SIGKILL |termination | ol e e eminate
SIGPTPE |write to pipe with no readers oo jterminate
57GP0LL | pollable event (po11) | | - iecminate
SIGPROF | profiling ime alarm (set it mex) | . terminate
SIGPWR |power fail/restart . |ignore
STGQUIT |terminal quit character | SO (D |t N
SIGSEGV [invalid memory reference . .. | terminate w/core
sx6sTOP [stop job |+ o |stopprocess
sIGsvS [invalid system call ©+|erminate w/core
termination . o e e | terminate
hardware fault . terminate w/core
. stop process
background read from control ty stop process.
background write to control tty |stop process
urgent condition | ignore
user-defined signal | terminate
| user-defined signal terminate
SIGVEALM|virtual time alarm (set it imex) | terminate
SIGHINCH |terminal window size change « lignore
SIGKCPU | CPU limit exceeded (set: | terminate w/core
s1GxEsz terminate w/core

Example: signal in UNIX

#include <signal.-h> - Event SIGINT: type the
interrupt key (Ctrl+C)

The default action is to

static void sig_int(int) ;

int main() { terminate the process.
- Now we change the default
if(signal(SIGINT,sig_int)==SIG_ERR) action into printing a
err_sys(“signal error”) ; message to screen.

sleep(100) ;
}

void sig_int(int signo)

printf("Interrupt\n”) ;
}

Unix Pipe

Half-duplex; only between parent and child processes.

- Creating a pipe:
— Call pipe();
— Then call fork();
— Close some ends to be a half-duplex pipe: close ().

- Communicate with a pipe:
— Use read () and write().

#include <unistd.h>

int pipe(int filedes[2]) ;

Dept. of CS, York Univ. 13

Prepared by Prof. Hui Jiang 13-01-24
(COSC3221)

Unix pipe: example

user process

fd[0] fd[1]

kernel

— -

parent child

fd[o] fd[1] | | fd[0] fd[1]

-X

Unix Pipe: example

int main() {

int n, £d[2] ;
int pid ;
char 1ine[200] ;

if(pipe(fd) < 0) e:r_sys("pipe error”) ;

if ((pid = fork()) < 0) err_sys(“fork error”) ;
else if (pid >0) {
close (£4[0])
write (£d[1], “hello word\n”, 12)
} else {
close (£d[1]) ;
n = read(£fd[0], line, 200) ;
write (STDOUT_FILENO, line, n) ;

exit(0) ;
}

OS Global Control Structures

- Tables are constructed for each entity that operating system
manages.

— Process table: PCBs and process images.

— Memory table: Allocation of main memory to processes;
Protection attributes for to shared y regions.

File table: all opened files; location on hardware; current status.

— /O table: all I/O devices being used; status of I/O operations.

Scheduling queues.

Dept. of CS, York Univ. 14

Prepared by Prof. Hui Jiang

(COSC3221)

Operating System Control

Structures

Memory

Devices

Process
Process

/O Tables

Files

Processes

File Tables
Primary Process Table
Process 1

Process 2

Process
Process 3 Image

. Process
. n
Process n

13-01-24

Dept. of CS, York Univ.

15

