
1

CSE 3221
Operating System Fundamentals

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

No. 3

 Thread

Thread Concept

·  What is thread?

·  Difference between a process and a thread

One single-threaded Process

User Space

Kernel Space

Process

stack User
Code

Global
Data

Process data (memory map,
Open files, working directory,
etc)

Registers

Stack pointer Program pointer

2

Multiple single-threaded Process

User
Space

Kernel
Space

stack User
Code

Global
Data

Registers

Process 1

stack User
Code

Global
Data

Registers

Process 2

stack User
Code

Global
Data

Registers

Process 3

One multi-threaded Process

User Space

Kernel Space

Process

User
Code

Global
Data

stack

Registers

stack

Registers

stack

Registers

Thread 1 Thread 2 Thread 3

Process vs. Thread
·  Traditional process contains a single stream of control.
 (one process can do one thing at a time)
·  Multithreaded process: contains several different streams of control.

Each stream is called a thread of this process.
 (multithreaded process can do multiple jobs simultaneously)
·  A multi-threaded process contains several threads.
·  All threads in a process share:

–  Code section & data section
–  OS resources (memory map, open devices, accounting, etc.)

·  Each thread includes:
–  A thread ID
–  A program counter (PC)
–  A register set
–  A stack & stack pointer

3

Comparison

·  One single-threaded process:
–  can do one thing at a time

·  Multiple single-threaded processes:
–  can do many things at the same time

·  One multi-threaded process
–  Also can do many things at the same time

·  Why multiple thread??
–  Multi-threaded process requires less OS resources (memory)
–  More efficient for OS to handle threads than processes

Multithreading

Benefits to use threads

·  Threads occupy less memory than processes.

·  Takes less time to create a new thread than a process.

·  Less time to terminate a thread than a process.

·  Less time to switch context between two threads within
the same process.

·  Since threads within the same process share memory
and files, they can communicate with each other
without invoking the kernel.

4

Thread-safe or Reentrant code

·  To be thread safe, the program must be reentrant:

–  Program never modifies itself.

–  Each function calling keeps track of its own progress.

–  No use of static/global data.

–  No use of non-reentrant functions or routines.

Non-reentrant C code

int delta;

int diff (int x, int y)
{

 delta = y - x;

 if (delta < 0) delta = -delta;

 return delta;

}

Reentrant C code

int diff (int x, int y)
{
 int delta;

 delta = y - x;

 if (delta < 0) delta = -delta;

 return delta;

}

5

Kernel Threads

·  Kernel threads are supported directly by OS kernel.
·  The kernel performs thread creation, scheduling, and

management in the kernel space.
·  Slow to maintain (need system calls to kernel space).
·  Each kernel thread can run totally independently:

–  One thread blocks, the kernel will schedule another
thread to run.

–  Several kernel threads can run in parallel if many
CPU’s are available.

–  OS to support kernel thread:
•  Windows NT/2000/XP
•  Solaris 2
•  Linux

Directly Use Kernel Threads

·  For each user task, make system call to create a
kernel thread.

Example of Kernel Thread:
Linux Thread

·  Linux kernel support kernel threads, system call clone().
·  fork() creates a new process

–  Create a new memory space for new process
–  Copy from the address space of the calling process

·  clone() simulates fork(), but
–  It does not create new memory space.
–  The new process shares the same address space of

the original process.
 two processes sharing the same memory space.
 (something like thread)

6

Linux Thread
·  Linux use clone() to create kernel threads.

#include <sched.h>
 int clone(int (*fn)(void *), void
*child_stack, int flags, void *arg);

fn: starting function
child_stack: stack memory space for child thread.
flags: what to share.
 for thread creation:
 flags = CLONE_FS | CLOSE_VM | CLONE_SIGHAND |

 CLONE_FILES
arg: arguments to pass.

User Thread
·  User thread: supported above the kernel and

implemented by a thread library in user space.
–  The library supports thread creation, scheduling, management in

user space.
–  User threads are fast to create and manage (no need to make a

system call to trap to the kernel).
–  User threads for better compatibility across OS platforms.

·  Problems with user threads:
–  The kernel is not aware of the existence of users threads.
–  User thread must be mapped to the kernel to execute in CPU.

·  Examples:
–  POSIX Threads (Pthreads), Java Threads, Win32 Threads, Solaris

UI-threads

Three Models for User Thread

·  One-to-One mapping

·  Many-to-One Mapping

·  Many-to-Many Mapping

7

One-to-One Mapping

Many-to-One Mapping

 or

Combined Model:
many-to-many mapping

8

Solaris Threads

Thread data structure in Solaris

LWP ID

Registers

priority

Kernel Stack

…

Threading Issues
·  fork() and exec() implementation

–  One thread calls exec(), it will replace the entire process.
–  One thread in a process call fork(), it duplicates all threads in the

process or just one calling thread.

·  Thread cancellation: terminating a thread before it finishes.
–  Asynchronous cancellation
–  Deferred cancellation

·  Unix Signal Handling
–  Deliver the signal to the thread to which the signal applies.
–  Deliver the signal to every thread in the process
–  Deliver the signal to certain threads in the process
–  Assign a specific thread to receive all signals for the process

9

Thread Pools
·  Create a number of threads at process start-up, place

them into a pool, where they sit and wait for work.
·  When the process receives a request, it awakens a

thread from the pool, and serves the request
immediately.
·  Once the thread completes, it returns to the pool.
·  If the pool contains no available thread, the process

waits until one becomes free.
·  Benefits of thread pools:

–  Faster to service a request.
–  Thread pool limits the total number of threads in

system (no overload).

Three Models to use Threads

·  Pipeline
–  Assembly line: each thread repeatedly performs

the same operation on a sequence of data sets,
passing each result to another thread for next step.

·  Work Crew
–  Each thread performs an operation on its own data

independently, then combine all results to get the
final.

·  Client/Server
–  A client contacts with an independent server for

each job.

Pipeline

Input

Thread A Thread B Thread C

Output

10

Work Crew

Input

Thread A Thread B Thread C

Output

Client/Server

Input B

Server

Input A Input C

Output B Output A Output C

User Threads: Pthreads

·  A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization.

·  API specifies behavior of the thread library,
implementation is up to development of the library.

·  Common in UNIX operating systems (Solaris, Linux, Mac
OS X).

11

Multi-threaded Process in Pthreads

User Space

Kernel Space

Process

User
Code

Global
Data

stack

Registers

stack

Registers

stack

Registers

Thread 1 Thread 2 Thread 3

Process Data (memory map, file descriptors, working directory, etc.)

Thread Library

User-Level
Thread Structures

Multithread programming

·  User thread vs. kernel thread
·  Multithreaded programming with POSIX thread (Pthread)

Pthread1 Pthread2 Pthread3 Pthread4

Kernel Thread 1 Kernel Thread 2

CPU 0 CPU 1

User Threads Pthread Library

Operating System

POSIX Thread (1)

·  Thread creation and termination:

#include <pthread.h>

pthread_create(pthread_t *thread, const pthread_attr_t
*attr, void *(*start) (void *), void *argv) ;

pthread_exit(void *value_ptr) ;

12

POSIX thread(2)
·  Wait for another thread to terminate

·  Cancellation

·  Others

pthread_join(pthread_t thread, void **value_ptr) ;

pthread_cancel(pthread_t thread) ;

pthread_self(void) ;

pthread_detach(pthread_t thread) ;

pthread_attr_init(pthread_attr_t *attr) ;

Example 1: thread.c

·  Example: thread.c (How to use pthread)

·  Two threads:
–  main() thread
–  runner() thread

Example 2: alarm.c

·  Example 1: alarm.c (no process/thread)

·  Example 2: alarm_fork.c (multiple process)

·  Example 3: alarm_thread.c (multiple thread)

