
1COSC3401-05-9-13

Introduction to Functional
Programming and basic Lisp

Based on Slides by

Yves Lespérance & Peter Roosen-Runge

2COSC3401-05-9-13

Functional vs Declarative Programming

 declarative programming uses logical
statements to describe objects.

 Prolog is an example of this kind of language.

 functional programming uses
mathematical functions and functional
expressions to describe objects.

 Functional programming has its roots in
lambda calculus

 Lisp is a functional language.

http://en.wikipedia.org/wiki/Lambda_calculus

3COSC3401-05-9-13

Functional Programming

 Functional programming is not based on
assignments that change the state.

 Functions specify other values in terms
of existing data without changing it.

 This allows all sorts of clever
implementations e.g. on parallel
hardware.

4COSC3401-05-9-13

Background on LISP

 Acronym for LISt Processing

 created by the AI pioneer John McCarthy

widely used in research on AI for over 40
years.

Used in industry to develop expert systems & other AI
applications

 found inside applications like Emacs and
AutoCAD as an embedded language

makes the embedding application easily extensible

5COSC3401-05-9-13

Lisp as an extensional
language

 embedding Lisp makes it easy to extend
an application

 creation of new languages built "on"
Lisp

 industrial-strength versions are usually
standardized on Common Lisp

6COSC3401-05-9-13

LISP Interpreter

 An interactive environment, always
evaluating input

 To run LISP at prism labs, type:

"clisp“

To exit: Ctrl+D

 To load the file lp.lsp, in C:\MyFolder, use the
following command:
(load “C://MyFolder/lp.lsp”)

7COSC3401-05-9-13

S-expressions

 A symbolic expression (s-expression) is
defined inductively as

 an atom (number or word), or

 dotted pair of s-expressions (e.g. (x.y)
where x and y are s-expressions)

 lists are the main kind of s-expressions

 Example: (a b c) or a. (b . (c . nil)) - nil is
the same as () - the only atom that is a list

8COSC3401-05-9-13

disassembly

 functions which extract the two parts of
a dotted pair:

 first extracts the first part,

also called car

 rest extracts the second part,

also called cdr

http://en.wikipedia.org/wiki/Mathematical_induction

9COSC3401-05-9-13

contents of a dotted-pair

first rest

atom or dotted pair atom or dotted pair

10COSC3401-05-9-13

new names for old

 car = function which returns the
content referenced by address-register

 cdr = function which returns content
referenced by decrement register

many books cling to car and cdr for
'backwards compatibility'.

 can use first and rest

 you can use either - the Lisp interpreter
doesn‟t care.

11COSC3401-05-9-13

list structure

first rest

nil or listatom or dotted pair

12COSC3401-05-9-13

functional expressions

 terms (functional expressions) are
represented as lists

write f(x, y) as (f x y).

(a b c) represents the term a(b, c).

 already we see a bit of the power of
symbolic computing:

 expressions have same form as data

 a function name is just an atom (a symbol)

 could itself be computed

13COSC3401-05-9-13

evaluating functions

 evaluating (function arg1 arg2 . .)

 applies the system function eval to each
argument

then applies the function to the results

 (+ 2 (+ 3 5))

eval(2) = 2

eval((+ 3 5)) = +(eval(3), eval(5)) = +(3,5) = 8

+ (2, 8) = 10

14COSC3401-05-9-13

blocking evaluation

 try evaluating

 (reverse (a b)) --> error

no function a defined

 (reverse (+ 1 2)) --> error

“3” is not a list

 how to block evaluation of an s-
expression?

 quote it

15COSC3401-05-9-13

the uses of quotation

 try evaluating

 (reverse (quote (a b))) --> (B A)

quote returns its argument unevaluated

 (reverse '(+ 1 2)) --> (2 1 +)

'<s-expression> = (quote <s-expression>)

 (equal '(reverse (a b)) '(b a))) ?

 NIL -- why?

 (equal (reverse '(reverse (a b))) '((a b)
reverse)))

 T

16COSC3401-05-9-13

List Processing Functions

> (car „(a b c)) --> A

> (cdr „(a b c)) --> (B C)

> (car(cdr(car „((a b))))) --> (B)

 Other built-in functions for list processing
include: cons, append, list, …

> (cons „a „(b c)) --> (A B C)

> (append „(a) „(b) „(c)) --> (A B C)

> (list „a „b „c) --> (A B C)

17COSC3401-05-9-13

oceans of functions

 the basis for Lisp programs is the
concept of a function

 and variants with special properties

 Common Lisp has several hundred
built-in functions

many are redundant - could be replaced
by expressions involving other functions

18COSC3401-05-9-13

Function definitions

 Written as (defun function-name arg-list
result-spec).

 function-name is a symbol.

 arg-list is a list of symbols, the parameters.

 result-spec is an expression whose value is the
result of the function.

 When a function application is evaluated,
substitute actual arguments for parameters in
result-spec and return its value.

19COSC3401-05-9-13

Function Example 1

> (defun avg (x y) (/ (+ x y) 2.0))

AVG

> (avg 1 2)

1.5

20COSC3401-05-9-13

Function Example 2

 Rewrite (John P Doe) as (Doe John P)

 (defun last_name_first (name_list)

(cons (third name_list)

(cons (first name_list)

(cons (second name_list)
nil))))

21COSC3401-05-9-13

Functions in LISP

 functions are considered as first class objects in
Lisp.

 A function can take another function as an
argument and a function can return a function as
a value.

 This is what make functional programming very
powerful.

 In a sense you can define your own control
structures and manipulate programs!

22COSC3401-05-9-13

More ….

 „Practical Common Lisp‟ Book online

http://www.gigamonkeys.com/book/

Notes on Lambda Calculus
http://www.mathstat.dal.ca/~selinger/papers/la
mbdanotes.pdf

http://www.gigamonkeys.com/book/
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf
http://www.mathstat.dal.ca/~selinger/papers/lambdanotes.pdf

